BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 16991200)

  • 1. Plant phosphoproteomics: a long road ahead.
    Kersten B; Agrawal GK; Iwahashi H; Rakwal R
    Proteomics; 2006 Oct; 6(20):5517-28. PubMed ID: 16991200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative phosphoproteomics analysis of nitric oxide-responsive phosphoproteins in cotton leaf.
    Fan S; Meng Y; Song M; Pang C; Wei H; Liu J; Zhan X; Lan J; Feng C; Zhang S; Yu S
    PLoS One; 2014; 9(4):e94261. PubMed ID: 24714030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical challenges translating mass spectrometry-based phosphoproteomics from discovery to clinical applications.
    Iliuk AB; Arrington JV; Tao WA
    Electrophoresis; 2014 Dec; 35(24):3430-40. PubMed ID: 24890697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive measurement of total protein phosphorylation level in complex protein samples.
    Pan L; Wang L; Hsu CC; Zhang J; Iliuk A; Tao WA
    Analyst; 2015 May; 140(10):3390-6. PubMed ID: 25857711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PhosMap: An ensemble bioinformatic platform to empower interactive analysis of quantitative phosphoproteomics.
    Tong M; Liu Z; Li J; Wei X; Shi W; Liang C; Yu C; Huang R; Lin Y; Wang X; Wang S; Wang Y; Huang J; Wang Y; Li T; Qin J; Zhan D; Ji ZL
    Comput Biol Med; 2024 May; 174():108391. PubMed ID: 38613887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass-Spectrometry-Based Functional Proteomic and Phosphoproteomic Technologies and Their Application for Analyzing Ex Vivo and In Vitro Models of Hypertrophic Cardiomyopathy.
    Moore J; Emili A
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant phosphoproteomics: an update.
    Kersten B; Agrawal GK; Durek P; Neigenfind J; Schulze W; Walther D; Rakwal R
    Proteomics; 2009 Feb; 9(4):964-88. PubMed ID: 19212952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sample Preparation and Phosphopeptide Enrichment for Plant Phosphoproteomics via Label-Free Mass Spectrometry.
    Marzban G; Sulaj E
    Methods Mol Biol; 2024; 2787():293-303. PubMed ID: 38656498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetraploidy in
    Jiang J; Yang N; Li L; Qin G; Ren K; Wang H; Deng J; Ding D
    Front Plant Sci; 2022; 13():875011. PubMed ID: 35574073
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Zhang Y; Fang Q; Zheng J; Li Z; Li Y; Feng Y; Han Y; Li Y
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35162952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale Proteomic and Phosphoproteomic Analyses of Maize Seedling Leaves During De-etiolation.
    Gao ZF; Shen Z; Chao Q; Yan Z; Ge XL; Lu T; Zheng H; Qian CR; Wang BC
    Genomics Proteomics Bioinformatics; 2020 Aug; 18(4):397-414. PubMed ID: 33385613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-Scale Phosphoproteomic Study of
    Kamal MM; Ishikawa S; Takahashi F; Suzuki K; Kamo M; Umezawa T; Shinozaki K; Kawamura Y; Uemura M
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33207747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive Phosphoproteomic Analysis of Pepper Fruit Development Provides Insight into Plant Signaling Transduction.
    Liu Z; Lv J; Liu Y; Wang J; Zhang Z; Chen W; Song J; Yang B; Tan F; Zou X; Ou L
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32183026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global Phosphoproteomic Analysis Reveals the Defense and Response Mechanisms of
    Liu H; Wang FF; Peng XJ; Huang JH; Shen SH
    Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30626061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Germination and Early Seedling Development in
    Romero-Rodríguez MC; Archidona-Yuste A; Abril N; Gil-Serrano AM; Meijón M; Jorrín-Novo JV
    Front Plant Sci; 2018; 9():1508. PubMed ID: 30405659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of omics approaches to understand oil/protein content during seed development in oilseed crops.
    Gupta M; Bhaskar PB; Sriram S; Wang PH
    Plant Cell Rep; 2017 May; 36(5):637-652. PubMed ID: 27796489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplex staining of 2-DE gels for an initial phosphoproteome analysis of germinating seeds and early grown seedlings from a non-orthodox specie: Quercus ilex L. subsp. ballota [Desf.] Samp.
    Romero-Rodríguez MC; Abril N; Sánchez-Lucas R; Jorrín-Novo JV
    Front Plant Sci; 2015; 6():620. PubMed ID: 26322061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. dbPPT: a comprehensive database of protein phosphorylation in plants.
    Cheng H; Deng W; Wang Y; Ren J; Liu Z; Xue Y
    Database (Oxford); 2014; 2014():bau121. PubMed ID: 25534750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Omics" of maize stress response for sustainable food production: opportunities and challenges.
    Gong F; Yang L; Tai F; Hu X; Wang W
    OMICS; 2014 Dec; 18(12):714-32. PubMed ID: 25401749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome characterization of developing grains in bread wheat cultivars (Triticum aestivum L.).
    Guo G; Lv D; Yan X; Subburaj S; Ge P; Li X; Hu Y; Yan Y
    BMC Plant Biol; 2012 Aug; 12():147. PubMed ID: 22900893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.