These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Hydrolysis of hydroxybenzotrifluorides and fluorinated uracil derivatives. A general mechanism for carbon-fluorine bond labilization. Sakai TT; Santi DV J Med Chem; 1973 Oct; 16(10):1079-84. PubMed ID: 4749467 [No Abstract] [Full Text] [Related]
4. Buffer-catalyzed tautomerism of uracil monoanion. Shapiro R; Kang S Biochim Biophys Acta; 1971 Feb; 232(1):1-4. PubMed ID: 5575175 [No Abstract] [Full Text] [Related]
5. [New method of preparation of 1,3-dimethyl-uracil-carboxylic acid]. Liebenow W; Liedtke H Chem Ber; 1972; 105(6):2095-7. PubMed ID: 5075369 [No Abstract] [Full Text] [Related]
6. Switching between reaction pathways by an alcohol cosolvent effect: SmI2-ethylene glycol vs SmI2-H2O mediated synthesis of uracils. Szostak M; Spain M; Sautier B; Procter DJ Org Lett; 2014 Nov; 16(21):5694-7. PubMed ID: 25343692 [TBL] [Abstract][Full Text] [Related]
7. Effects of hydrogen-bonding and stacking interactions with amino acids on the acidity of uracil. Hunter KC; Millen AL; Wetmore SD J Phys Chem B; 2007 Feb; 111(7):1858-71. PubMed ID: 17256895 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, structure and study of azo-hydrazone tautomeric equilibrium of 1,3-dimethyl-5-(arylazo)-6-amino-uracil derivatives. Debnath D; Roy S; Li BH; Lin CH; Misra TK Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():185-97. PubMed ID: 25594208 [TBL] [Abstract][Full Text] [Related]
9. Studies in prebiotic synthesis. 3. Synthesis of pyrimidines from cyanoacetylene and cyanate. Ferris JP; Sanchez RA; Orgel LE J Mol Biol; 1968 May; 33(3):693-704. PubMed ID: 5700419 [No Abstract] [Full Text] [Related]
10. Escherichia coli uracil DNA glycosylase: NMR characterization of the short hydrogen bond from His187 to uracil O2. Drohat AC; Stivers JT Biochemistry; 2000 Oct; 39(39):11865-75. PubMed ID: 11009598 [TBL] [Abstract][Full Text] [Related]
11. A method for the rapid preparation of 5-vinyluracil in high yield. Jones AS; Stephenson GP; Walker RT Nucleic Acids Res; 1974 Jan; 1(1):105-7. PubMed ID: 10793664 [TBL] [Abstract][Full Text] [Related]
12. Thymidylate synthetase. Model studies of inhibition by 5-trifluoromethyl-2'-deoxyuridylic acid. Santi DV; Sakai TT Biochemistry; 1971 Sep; 10(19):3598-607. PubMed ID: 5146573 [No Abstract] [Full Text] [Related]
13. A convenient synthesis of 2,3'-imino-1-(beta-D-lyosfuranosyl)uracil and its derivatives using azide ion. Sasaki T; Minamoto K; Sugiura T J Org Chem; 1975 Nov; 40(24):3498-3502. PubMed ID: 1185326 [No Abstract] [Full Text] [Related]
14. Preparation of 3'-C-branched uridine analogues, suitable for conversion into functionalised 3'-C-methylene derivatives. Winqvist A; Strömberg R Nucleosides Nucleotides Nucleic Acids; 2001; 20(4-7):1389-92. PubMed ID: 11563029 [TBL] [Abstract][Full Text] [Related]
15. Raman spectroscopy of uracil DNA glycosylase-DNA complexes: insights into DNA damage recognition and catalysis. Dong J; Drohat AC; Stivers JT; Pankiewicz KW; Carey PR Biochemistry; 2000 Oct; 39(43):13241-50. PubMed ID: 11052677 [TBL] [Abstract][Full Text] [Related]
16. Role of electrophilic and general base catalysis in the mechanism of Escherichia coli uracil DNA glycosylase. Drohat AC; Jagadeesh J; Ferguson E; Stivers JT Biochemistry; 1999 Sep; 38(37):11866-75. PubMed ID: 10508389 [TBL] [Abstract][Full Text] [Related]
17. Cytosine and cytidine analogues: synthesis and properties of 5-ethylcytosine, 5-ethylcytidine and a number of their derivatives. Kulikowski TD; Shugar D Acta Biochim Pol; 1971; 18(2):209-36. PubMed ID: 5111608 [No Abstract] [Full Text] [Related]
18. Synthesis and NMR properties of the first boron analogues of uracil. Ruman T; Długopolska K; Rode W Bioorg Chem; 2010 Feb; 38(1):33-6. PubMed ID: 19853882 [TBL] [Abstract][Full Text] [Related]
19. The chemistry of some 5-(2-hydroxyalkyl)uracil derivatives and a synthesis of 5-vinyluracil. Fissekis JD; Sweet F J Org Chem; 1973 Jan; 38(2):264-9. PubMed ID: 4687709 [No Abstract] [Full Text] [Related]
20. Exciplex formation between pyrene and guanine in highly polar solvents. Kawai T; Ikegami M; Arai T Chem Commun (Camb); 2004 Apr; (7):824-5. PubMed ID: 15045082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]