These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 16994454)
1. The diffusion of lactate into and from muscle. Devadatta SC J Physiol; 1933 Sep; 79(2):194-8. PubMed ID: 16994454 [No Abstract] [Full Text] [Related]
2. Lactate transport in skeletal muscle cells: uptake in L6 myoblasts. Beaudry M; Duvallet A; Thieulart L; el Abida K; Rieu M Acta Physiol Scand; 1991 Mar; 141(3):379-81. PubMed ID: 1858508 [TBL] [Abstract][Full Text] [Related]
3. Metabolic intermediates and lactate diffusion in active dog skeletal muscle. Graham TE; Sinclair DG; Chapler CK Am J Physiol; 1976 Sep; 231(3):766-71. PubMed ID: 184714 [TBL] [Abstract][Full Text] [Related]
4. Effects of high myoplasmic L-lactate concentration on E-C coupling in mammalian skeletal muscle. Posterino GS; Fryer MW J Appl Physiol (1985); 2000 Aug; 89(2):517-28. PubMed ID: 10926634 [TBL] [Abstract][Full Text] [Related]
5. Diffusion of lactate and ammonium in relation to growth of Geotrichum candidum at the surface of solid media. Aldarf M; Fourcade F; Amrane A; Prigent Y Biotechnol Bioeng; 2004 Jul; 87(1):69-80. PubMed ID: 15211490 [TBL] [Abstract][Full Text] [Related]
6. Separation and quantification of lactate and lipid at 1.3 ppm by diffusion-weighted magnetic resonance spectroscopy. Wang AM; Leung GK; Kiang KM; Chan D; Cao P; Wu EX Magn Reson Med; 2017 Feb; 77(2):480-489. PubMed ID: 26833380 [TBL] [Abstract][Full Text] [Related]
7. Detection of intracellular lactate with localized diffusion {1H-13C}-spectroscopy in rat glioma in vivo. Pfeuffer J; Lin JC; Delabarre L; Ugurbil K; Garwood M J Magn Reson; 2005 Nov; 177(1):129-38. PubMed ID: 16111904 [TBL] [Abstract][Full Text] [Related]
8. Extracellular-intracellular distribution of glucose and lactate in the rat brain assessed noninvasively by diffusion-weighted 1H nuclear magnetic resonance spectroscopy in vivo. Pfeuffer J; Tkác I; Gruetter R J Cereb Blood Flow Metab; 2000 Apr; 20(4):736-46. PubMed ID: 10779018 [TBL] [Abstract][Full Text] [Related]
9. Lactate concentrations in human skeletal muscle biopsy, microdialysate and venous blood during dynamic exercise under blood flow restriction. Lundberg G; Olofsson P; Ungerstedt U; Jansson E; Sundberg CJ Pflugers Arch; 2002 Jan; 443(3):458-65. PubMed ID: 11810217 [TBL] [Abstract][Full Text] [Related]
10. Lactate efflux from fatigued fast-twitch muscle fibres of Xenopus laevis under various extracellular conditions. Nagesser AS; van der Laarse WJ; Elzinga G J Physiol; 1994 Nov; 481 ( Pt 1)(Pt 1):139-47. PubMed ID: 7853236 [TBL] [Abstract][Full Text] [Related]
11. Muscle interstitial glucose and lactate levels during dynamic exercise in humans determined by microdialysis. MacLean DA; Bangsbo J; Saltin B J Appl Physiol (1985); 1999 Oct; 87(4):1483-90. PubMed ID: 10517782 [TBL] [Abstract][Full Text] [Related]
12. Lactate transport by rainbow trout white muscle: kinetic characteristics and sensitivity to inhibitors. Wang Y; Wright PM; Heigenhauser GJ; Wood CM Am J Physiol; 1997 May; 272(5 Pt 2):R1577-87. PubMed ID: 9176350 [TBL] [Abstract][Full Text] [Related]
13. Lactate kinetics and individual anaerobic threshold. Stegmann H; Kindermann W; Schnabel A Int J Sports Med; 1981 Aug; 2(3):160-5. PubMed ID: 7333753 [TBL] [Abstract][Full Text] [Related]
14. Associations between diffusion and perfusion parameters, N-acetyl aspartate, and lactate in acute ischemic stroke. Cvoro V; Wardlaw JM; Marshall I; Armitage PA; Rivers CS; Bastin ME; Carpenter TK; Wartolowska K; Farrall AJ; Dennis MS Stroke; 2009 Mar; 40(3):767-72. PubMed ID: 19150873 [TBL] [Abstract][Full Text] [Related]
15. A microelectrode study of the mechanisms of L-lactate entry into and release from frog sartorius muscle. Mason MJ; Thomas RC J Physiol; 1988 Jun; 400():459-79. PubMed ID: 3262155 [TBL] [Abstract][Full Text] [Related]
16. Lactate transport in L6 skeletal muscle cells and vesicles: allosteric or multisite mechanism and functional membrane marker of differentiation. Beaudry M; Mouaffak N; el Abida K; Rieu M; Mengual R Acta Physiol Scand; 1998 Jan; 162(1):33-46. PubMed ID: 9492900 [TBL] [Abstract][Full Text] [Related]
17. Metabolic influences of fiber size in aerobic and anaerobic locomotor muscles of the blue crab, Callinectes sapidus. Johnson LK; Dillaman RM; Gay DM; Blum JE; Kinsey ST J Exp Biol; 2004 Nov; 207(Pt 23):4045-56. PubMed ID: 15498950 [TBL] [Abstract][Full Text] [Related]
18. Maximal O2 uptake of in situ dog muscle during acute hypoxemia with constant perfusion. Hogan MC; Bebout DE; Wagner PD; West JB J Appl Physiol (1985); 1990 Aug; 69(2):570-6. PubMed ID: 2228867 [TBL] [Abstract][Full Text] [Related]
19. Limitation of maximal O2 uptake and performance by acute hypoxia in dog muscle in situ. Hogan MC; Roca J; Wagner PD; West JB J Appl Physiol (1985); 1988 Aug; 65(2):815-21. PubMed ID: 3170431 [TBL] [Abstract][Full Text] [Related]
20. The role of skeletal muscle and liver on lactate metabolism during hypoxia in rats. Fuse A J Anesth; 1999; 13(3):161-5. PubMed ID: 14530936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]