These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 16995628)
1. CO2-enrichment and nutrient availability alter ectomycorrhizal fungal communities. Parrent JL; Morris WF; Vilgalys R Ecology; 2006 Sep; 87(9):2278-87. PubMed ID: 16995628 [TBL] [Abstract][Full Text] [Related]
2. Expression of genes involved in symbiotic carbon and nitrogen transport in Pinus taeda mycorrhizal roots exposed to CO2 enrichment and nitrogen fertilization. Parrent JL; Vilgalys R Mycorrhiza; 2009 Sep; 19(7):469-479. PubMed ID: 19415342 [TBL] [Abstract][Full Text] [Related]
3. Girdling affects ectomycorrhizal fungal (EMF) diversity and reveals functional differences in EMF community composition in a beech forest. Pena R; Offermann C; Simon J; Naumann PS; Gessler A; Holst J; Dannenmann M; Mayer H; Kögel-Knabner I; Rennenberg H; Polle A Appl Environ Microbiol; 2010 Mar; 76(6):1831-41. PubMed ID: 20097809 [TBL] [Abstract][Full Text] [Related]
4. Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone. Hubert NA; Gehring CA Mycorrhiza; 2008 Sep; 18(6-7):363-74. PubMed ID: 18685872 [TBL] [Abstract][Full Text] [Related]
5. Long-term dynamics of mycorrhizal root tips in a loblolly pine forest grown with free-air CO2 enrichment and soil N fertilization for 6 years. Pritchard SG; Taylor BN; Cooper ER; Beidler KV; Strand AE; McCormack ML; Zhang S Glob Chang Biol; 2014 Apr; 20(4):1313-26. PubMed ID: 24123532 [TBL] [Abstract][Full Text] [Related]
6. Influence of elevated CO2 and mycorrhizae on nitrogen acquisition: contrasting responses in Pinus taeda and Liquidambar styraciflua. Constable JV; Bassirirad H; Lussenhop J; Zerihun A Tree Physiol; 2001 Feb; 21(2-3):83-91. PubMed ID: 11303652 [TBL] [Abstract][Full Text] [Related]
7. Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi. Holste EK; Kobe RK; Gehring CA Mycorrhiza; 2017 Apr; 27(3):211-223. PubMed ID: 27838856 [TBL] [Abstract][Full Text] [Related]
8. Diversity and species distribution of ectomycorrhizal fungi along productivity gradients of a southern boreal forest. Kranabetter JM; Durall DM; MacKenzie WH Mycorrhiza; 2009 Feb; 19(2):99-111. PubMed ID: 18941804 [TBL] [Abstract][Full Text] [Related]
9. Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest. Taylor BN; Strand AE; Cooper ER; Beidler KV; Schönholz M; Pritchard SG Tree Physiol; 2014 Sep; 34(9):955-65. PubMed ID: 25056092 [TBL] [Abstract][Full Text] [Related]
10. Ectomycorrhizal communities of ponderosa pine and lodgepole pine in the south-central Oregon pumice zone. Garcia MO; Smith JE; Luoma DL; Jones MD Mycorrhiza; 2016 May; 26(4):275-86. PubMed ID: 26547440 [TBL] [Abstract][Full Text] [Related]
11. Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Cox F; Barsoum N; Lilleskov EA; Bidartondo MI Ecol Lett; 2010 Sep; 13(9):1103-13. PubMed ID: 20545731 [TBL] [Abstract][Full Text] [Related]
12. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Glassman SI; Wang IJ; Bruns TD Mol Ecol; 2017 Dec; 26(24):6960-6973. PubMed ID: 29113014 [TBL] [Abstract][Full Text] [Related]
13. Elevated CO2 and O3 effects on ectomycorrhizal fungal root tip communities in consideration of a post-agricultural soil nutrient gradient legacy. Andrew C; Lilleskov EA Mycorrhiza; 2014 Nov; 24(8):581-93. PubMed ID: 24728759 [TBL] [Abstract][Full Text] [Related]
14. Epigeous fruiting bodies of ectomycorrhizal fungi as indicators of soil fertility and associated nitrogen status of boreal forests. Kranabetter JM; Friesen J; Gamiet S; Kroeger P Mycorrhiza; 2009 Oct; 19(8):535-548. PubMed ID: 19449039 [TBL] [Abstract][Full Text] [Related]
15. Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO2 and nitrogen fertilization. Parrent JL; Vilgalys R New Phytol; 2007; 176(1):164-174. PubMed ID: 17803647 [TBL] [Abstract][Full Text] [Related]
16. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux. Oishi AC; Palmroth S; Johnsen KH; McCarthy HR; Oren R Glob Chang Biol; 2014 Apr; 20(4):1146-60. PubMed ID: 24115580 [TBL] [Abstract][Full Text] [Related]
17. Soil fungal cellobiohydrolase I gene (cbhI) composition and expression in a loblolly pine plantation under conditions of elevated atmospheric CO2 and nitrogen fertilization. Weber CF; Balasch MM; Gossage Z; Porras-Alfaro A; Kuske CR Appl Environ Microbiol; 2012 Jun; 78(11):3950-7. PubMed ID: 22467503 [TBL] [Abstract][Full Text] [Related]
18. Contrasting effects of intra- and interspecific identity and richness of ectomycorrhizal fungi on host plants, nutrient retention and multifunctionality. Hazard C; Kruitbos L; Davidson H; Taylor AF; Johnson D New Phytol; 2017 Jan; 213(2):852-863. PubMed ID: 27636558 [TBL] [Abstract][Full Text] [Related]
19. Soil propagule banks of ectomycorrhizal fungi along forest development stages after mining. Huang J; Nara K; Zong K; Lian C Microb Ecol; 2015 May; 69(4):768-77. PubMed ID: 25213652 [TBL] [Abstract][Full Text] [Related]
20. Ectomycorrhizal fungal succession coincides with shifts in organic nitrogen availability and canopy closure in post-wildfire jack pine forests. LeDuc SD; Lilleskov EA; Horton TR; Rothstein DE Oecologia; 2013 May; 172(1):257-69. PubMed ID: 23053232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]