BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

610 related articles for article (PubMed ID: 16995687)

  • 1. Effect of structure in benzaldehyde oximes on the formation of aldehydes and nitriles under photoinduced electron-transfer conditions.
    de Lijser HJ; Hsu S; Marquez BV; Park A; Sanguantrakun N; Sawyer JR
    J Org Chem; 2006 Sep; 71(20):7785-92. PubMed ID: 16995687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic aspects of the formation of aldehydes and nitriles in photosensitized reactions of aldoxime ethers.
    de Lijser HJ; Rangel NA; Tetalman MA; Tsai CK
    J Org Chem; 2007 May; 72(11):4126-34. PubMed ID: 17477578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quinone-sensitized steady-state photolysis of acetophenone oximes under aerobic conditions: kinetics and product studies.
    Park A; Kosareff NM; Kim JS; de Lijser HJ
    Photochem Photobiol; 2006; 82(1):110-8. PubMed ID: 16038577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosensitized reactions of oxime ethers: a steady-state and laser flash photolysis study.
    de Lijser HJ; Tsai CK
    J Org Chem; 2004 Apr; 69(9):3057-67. PubMed ID: 15104444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of alkylarenes by nitrate catalyzed by polyoxophosphomolybdates: synthetic applications and mechanistic insights.
    Khenkin AM; Neumann R
    J Am Chem Soc; 2004 May; 126(20):6356-62. PubMed ID: 15149233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on photoinduced H-atom and electron transfer reactions of o-naphthoquinones by laser flash photolysis.
    Pan Y; Fu Y; Liu S; Yu H; Gao Y; Guo Q; Yu S
    J Phys Chem A; 2006 Jun; 110(23):7316-22. PubMed ID: 16759119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic effects of hydrogen bonds on proton-coupled electron transfer from phenols.
    Sjödin M; Irebo T; Utas JE; Lind J; Merényi G; Akermark B; Hammarström L
    J Am Chem Soc; 2006 Oct; 128(40):13076-83. PubMed ID: 17017787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of the hydrogen transfer from the OH group to oxygen-centered radicals: proton-coupled electron-transfer versus radical hydrogen abstraction.
    Olivella S; Anglada JM; Solé A; Bofill JM
    Chemistry; 2004 Jul; 10(14):3404-10. PubMed ID: 15252786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydride, hydrogen atom, proton, and electron transfer driving forces of various five-membered heterocyclic organic hydrides and their reaction intermediates in acetonitrile.
    Zhu XQ; Zhang MT; Yu A; Wang CH; Cheng JP
    J Am Chem Soc; 2008 Feb; 130(8):2501-16. PubMed ID: 18254624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bimolecular hydrogen abstraction from phenols by aromatic ketone triplets.
    Lathioor EC; Leigh WJ
    Photochem Photobiol; 2006; 82(1):291-300. PubMed ID: 16042506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyl radical initiated oxidation of s-triazine: hydrogen abstraction is faster than hydroxyl addition.
    da Silva G; Bozzelli JW; Asatryan R
    J Phys Chem A; 2009 Jul; 113(30):8596-606. PubMed ID: 19572687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transfer and singlet oxygen mechanisms in the photooxygenation of dibutyl sulfide and thioanisole in MeCN sensitized by N-methylquinolinium tetrafluoborate and 9,10-dicyanoanthracene. The probable involvement of a thiadioxirane intermediate in electron transfer photooxygenations.
    Baciocchi E; Del Giacco T; Elisei F; Gerini MF; Guerra M; Lapi A; Liberali P
    J Am Chem Soc; 2003 Dec; 125(52):16444-54. PubMed ID: 14692788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-transfer mechanism in the N-demethylation of N,N-dimethylanilines by the phthalimide-N-oxyl radical.
    Baciocchi E; Bietti M; Gerini MF; Lanzalunga O
    J Org Chem; 2005 Jun; 70(13):5144-9. PubMed ID: 15960517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidations of NADH analogues by cis-[RuIV(bpy)2(py)(O)]2+ occur by hydrogen-atom transfer rather than by hydride transfer.
    Matsuo T; Mayer JM
    Inorg Chem; 2005 Apr; 44(7):2150-8. PubMed ID: 15792449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrotrioxides rather than cyclic tetraoxides (tetraoxolanes) as the primary reaction intermediates in the low-temperature ozonation of aldehydes. The case of benzaldehyde.
    Cerkovnik J; Plesnicar B; Koller J; Tuttle T
    J Org Chem; 2009 Jan; 74(1):96-101. PubMed ID: 19007299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photosensitized oxidation of sulfides: discriminating between the singlet-oxygen mechanism and electron transfer involving superoxide anion or molecular oxygen.
    Bonesi SM; Manet I; Freccero M; Fagnoni M; Albini A
    Chemistry; 2006 Jun; 12(18):4844-57. PubMed ID: 16598801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the Compound I-like reactivity of a bare high-valent oxo iron porphyrin complex: the oxidation of tertiary amines.
    Chiavarino B; Cipollini R; Crestoni ME; Fornarini S; Lanucara F; Lapi A
    J Am Chem Soc; 2008 Mar; 130(10):3208-17. PubMed ID: 18278912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of cyclic dipeptides by photoinduced H-atom abstraction. A laser flash FT EPR and optical spectroscopy study.
    Tarábek P; Bonifacić M; Beckert D
    J Phys Chem A; 2007 Jun; 111(23):4958-64. PubMed ID: 17516635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cation-modulated electron-transfer channel: H-atom transfer vs proton-coupled electron transfer with a variable electron-transfer channel in acylamide units.
    Chen X; Bu Y
    J Am Chem Soc; 2007 Aug; 129(31):9713-20. PubMed ID: 17636909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of pressure on hydrogen transfer reactions with quinones.
    Wurche F; Sicking W; Sustmann R; Klärner FG; Rüchardt C
    Chemistry; 2004 Jun; 10(11):2707-21. PubMed ID: 15195302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.