These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 16995753)

  • 21. Mitochondrial "movement" and lens optics following oxidative stress from UV-B irradiation: cultured bovine lenses and human retinal pigment epithelial cells (ARPE-19) as examples.
    Bantseev V; Youn HY
    Ann N Y Acad Sci; 2006 Dec; 1091():17-33. PubMed ID: 17341599
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical models for living cells--a review.
    Lim CT; Zhou EH; Quek ST
    J Biomech; 2006; 39(2):195-216. PubMed ID: 16321622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A continuum model of motility in ameboid cells.
    Gracheva ME; Othmer HG
    Bull Math Biol; 2004 Jan; 66(1):167-93. PubMed ID: 14670535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and validation of vertical scanning interferometry as a novel method for acquiring chondrocyte geometry.
    Scott CC; Luttge A; Athanasiou KA
    J Biomed Mater Res A; 2005 Jan; 72(1):83-90. PubMed ID: 15543631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Viscoelastic properties of human tympanic membrane.
    Cheng T; Dai C; Gan RZ
    Ann Biomed Eng; 2007 Feb; 35(2):305-14. PubMed ID: 17160465
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The cell-type specificity of mitochondrial dynamics.
    Kuznetsov AV; Hermann M; Saks V; Hengster P; Margreiter R
    Int J Biochem Cell Biol; 2009 Oct; 41(10):1928-39. PubMed ID: 19703655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ameboid cell motility: a model and inverse problem, with an application to live cell imaging data.
    Coskun H; Li Y; Mackey MA
    J Theor Biol; 2007 Jan; 244(2):169-79. PubMed ID: 16997326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative analysis of the movements of cytoplasmic granules in polarized fibroblasts.
    Grigoriev IS; Chernobelskaya AA; Vorobjev IA
    Membr Cell Biol; 1997; 11(2):195-211. PubMed ID: 9354399
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational modeling to predict the temporal regulation of chondrocyte metabolism in response to various dynamic compression regimens.
    Sengers BG; Oomens CW; Nguyen TQ; Bader DL
    Biomech Model Mechanobiol; 2006 Jun; 5(2-3):111-22. PubMed ID: 16514518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The cell as a material.
    Kasza KE; Rowat AC; Liu J; Angelini TE; Brangwynne CP; Koenderink GH; Weitz DA
    Curr Opin Cell Biol; 2007 Feb; 19(1):101-7. PubMed ID: 17174543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Viscoelastic parameter estimation based on spectral analysis.
    Eskandari H; Salcudean SE; Rohling R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1611-25. PubMed ID: 18986951
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate.
    Honda H; Tanemura M; Nagai T
    J Theor Biol; 2004 Feb; 226(4):439-53. PubMed ID: 14759650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterogeneous transportation of alpha1B-adrenoceptor in living cells.
    Guan Y; Xu M; Liang Z; Xu N; Lu Z; Han Q; Zhang Y; Zhao XS
    Biophys Chem; 2007 May; 127(3):149-54. PubMed ID: 17306438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deformation analysis of the periodontium considering the viscoelasticity of the periodontal ligament.
    Qian L; Todo M; Morita Y; Matsushita Y; Koyano K
    Dent Mater; 2009 Oct; 25(10):1285-92. PubMed ID: 19560807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large deformation finite element analysis of micropipette aspiration to determine the mechanical properties of the chondrocyte.
    Baaijens FP; Trickey WR; Laursen TA; Guilak F
    Ann Biomed Eng; 2005 Apr; 33(4):494-501. PubMed ID: 15909655
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing the interior of living cells with fluorescence correlation spectroscopy.
    Weiss M
    Ann N Y Acad Sci; 2008; 1130():21-7. PubMed ID: 18096846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scaffold-free cartilage by rotational culture for tissue engineering.
    Furukawa KS; Imura K; Tateishi T; Ushida T
    J Biotechnol; 2008 Jan; 133(1):134-45. PubMed ID: 17913274
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantifying biomechanical motion using Procrustes motion analysis.
    Adams DC; Cerney MM
    J Biomech; 2007; 40(2):437-44. PubMed ID: 16448654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Confocal microscopy indentation system for studying in situ chondrocyte mechanics.
    Han SK; Colarusso P; Herzog W
    Med Eng Phys; 2009 Oct; 31(8):1038-42. PubMed ID: 19586793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.