These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16995756)

  • 1. Laminar airflow and nanoparticle or vapor deposition in a human nasal cavity model.
    Shi H; Kleinstreuer C; Zhang Z
    J Biomech Eng; 2006 Oct; 128(5):697-706. PubMed ID: 16995756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of micron- and nanoparticle deposition patterns in a realistic human nasal cavity.
    Wang SM; Inthavong K; Wen J; Tu JY; Xue CL
    Respir Physiol Neurobiol; 2009 May; 166(3):142-51. PubMed ID: 19442930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of oral airway geometry characteristics on the diffusional deposition of inhaled nanoparticles.
    Xi J; Longest PW
    J Biomech Eng; 2008 Feb; 130(1):011008. PubMed ID: 18298184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulation of inspiratory airflow in all regions of the F344 rat nasal passages.
    Kimbell JS; Godo MN; Gross EA; Joyner DR; Richardson RB; Morgan KT
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):388-98. PubMed ID: 9266813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local deposition fractions of ultrafine particles in a human nasal-sinus cavity CFD model.
    Ge QJ; Inthavong K; Tu JY
    Inhal Toxicol; 2012 Jul; 24(8):492-505. PubMed ID: 22746399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer simulation of inspiratory nasal airflow and inhaled gas uptake in a rhesus monkey.
    Kepler GM; Richardson RB; Morgan KT; Kimbell JS
    Toxicol Appl Pharmacol; 1998 May; 150(1):1-11. PubMed ID: 9630447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulations for detailed airflow dynamics in a human nasal cavity.
    Wen J; Inthavong K; Tu J; Wang S
    Respir Physiol Neurobiol; 2008 Apr; 161(2):125-35. PubMed ID: 18378196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deposition of naphthalene and tetradecane vapors in models of the human respiratory system.
    Zhang Z; Kleinstreuer C
    Inhal Toxicol; 2011 Jan; 23(1):44-57. PubMed ID: 21222561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational fluid dynamics simulations of inhaled nano- and microparticle deposition in the rhesus monkey nasal passages.
    Schroeter JD; Asgharian B; Price OT; McClellan GE
    Inhal Toxicol; 2013 Oct; 25(12):691-701. PubMed ID: 24102469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction.
    Zhao K; Scherer PW; Hajiloo SA; Dalton P
    Chem Senses; 2004 Jun; 29(5):365-79. PubMed ID: 15201204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro and nanoparticle deposition in human nasal passage pre and post virtual maxillary sinus endoscopic surgery.
    Abouali O; Keshavarzian E; Farhadi Ghalati P; Faramarzi A; Ahmadi G; Bagheri MH
    Respir Physiol Neurobiol; 2012 May; 181(3):335-45. PubMed ID: 22465001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nasal dosimetry of inhaled gases and particles: where do inhaled agents go in the nose?
    Kimbell JS
    Toxicol Pathol; 2006; 34(3):270-3. PubMed ID: 16698725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Olfactory deposition of inhaled nanoparticles in humans.
    Garcia GJ; Schroeter JD; Kimbell JS
    Inhal Toxicol; 2015; 27(8):394-403. PubMed ID: 26194036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model for the uptake of inhaled vapors in the nose of the dog during cyclic breathing.
    Gerde P; Dahl AR
    Toxicol Appl Pharmacol; 1991 Jun; 109(2):276-88. PubMed ID: 2068727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro experiments and numerical simulations of airflow in realistic nasal airway geometry.
    Croce C; Fodil R; Durand M; Sbirlea-Apiou G; Caillibotte G; Papon JF; Blondeau JR; Coste A; Isabey D; Louis B
    Ann Biomed Eng; 2006 Jun; 34(6):997-1007. PubMed ID: 16783655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling airflow and particle transport/deposition in pulmonary airways.
    Kleinstreuer C; Zhang Z; Li Z
    Respir Physiol Neurobiol; 2008 Nov; 163(1-3):128-38. PubMed ID: 18674643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways.
    Naseri A; Shaghaghian S; Abouali O; Ahmadi G
    Respir Physiol Neurobiol; 2017 Oct; 244():56-72. PubMed ID: 28673875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid computational fluid dynamics and physiologically based pharmacokinetic model for comparison of predicted tissue concentrations of acrylic acid and other vapors in the rat and human nasal cavities following inhalation exposure.
    Frederick CB; Gentry PR; Bush ML; Lomax LG; Black KA; Finch L; Kimbell JS; Morgan KT; Subramaniam RP; Morris JB; Ultman JS
    Inhal Toxicol; 2001 May; 13(5):359-76. PubMed ID: 11295868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of nasal structure on the distribution of airflow in nasal cavity.
    Yu S; Liu Y; Sun X; Li S
    Rhinology; 2008 Jun; 46(2):137-43. PubMed ID: 18575016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An adjustable triple-bifurcation unit model for air-particle flow simulations in human tracheobronchial airways.
    Kleinstreuer C; Zhang Z
    J Biomech Eng; 2009 Feb; 131(2):021007. PubMed ID: 19102566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.