BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16995765)

  • 1. Effect of assumed stiffness and mass density on the impact response of the human chest using a three-dimensional FE model of the human body.
    Kimpara H; Iwamoto M; Watanabe I; Miki K; Lee JB; Yang KH; King AI
    J Biomech Eng; 2006 Oct; 128(5):772-6. PubMed ID: 16995765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element models of rib as an inhomogeneous beam structure under high-speed impacts.
    Niu Y; Shen W; Stuhmiller JH
    Med Eng Phys; 2007 Sep; 29(7):788-98. PubMed ID: 17045511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of a relationship between external force to shoulder and chest injury of WorldSID and THUMS in 32 km/h oblique pole side impact.
    Tanaka S; Hayashi S; Fukushima S; Yasuki T
    Traffic Inj Prev; 2013; 14 Suppl():S64-76. PubMed ID: 23905926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional finite element simulations of the mechanical response of the fingertip to static and dynamic compressions.
    Wu JZ; Welcome DE; Dong RG
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):55-63. PubMed ID: 16880157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the rib cage on thoracic spine flexibility.
    Sham ML; Zander T; Rohlmann A; Bergmann G
    Biomed Tech (Berl); 2005 Nov; 50(11):361-5. PubMed ID: 16370149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structural fingertip model for simulating of the biomechanics of tactile sensation.
    Wu JZ; Dong RG; Rakheja S; Schopper AW; Smutz WP
    Med Eng Phys; 2004 Mar; 26(2):165-75. PubMed ID: 15036184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A finite element study of age-based size and shape variation of the human rib cage.
    Gayzik FS; Loftis KL; Slice DE; Stitzel JD
    Biomed Sci Instrum; 2006; 42():19-24. PubMed ID: 16817579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of cell Young's modulus of adherent cells probed by optical and magnetic tweezers: influence of cell thickness and bead immersion.
    Kamgoué A; Ohayon J; Tracqui P
    J Biomech Eng; 2007 Aug; 129(4):523-30. PubMed ID: 17655473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of body weight, height, and rib cage area moment of inertia on blunt chest impact response.
    Kimpara H; Lee JB; Yang KH; King AI
    Traffic Inj Prev; 2010 Apr; 11(2):207-14. PubMed ID: 20373242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography.
    Follet H; Peyrin F; Vidal-Salle E; Bonnassie A; Rumelhart C; Meunier PJ
    J Biomech; 2007; 40(10):2174-83. PubMed ID: 17196599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain energy density as a rupture criterion for the kidney: impact tests on porcine organs, finite element simulation, and a baseline comparison between human and porcine tissues.
    Snedeker JG; Barbezat M; Niederer P; Schmidlin FR; Farshad M
    J Biomech; 2005 May; 38(5):993-1001. PubMed ID: 15797581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress profile of infant rib in the setting of child abuse: A finite element parametric study.
    Tsai A; Coats B; Kleinman PK
    J Biomech; 2012 Jul; 45(11):1861-8. PubMed ID: 22727522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Hybrid III injury assessment in steering wheel rim to chest impacts using responses from finite element Hybrid III and human body model.
    Holmqvist K; Davidsson J; Mendoza-Vazquez M; Rundberget P; Svensson MY; Thorn S; Törnvall F
    Traffic Inj Prev; 2014; 15(2):196-205. PubMed ID: 24345023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impulse response due to jumping on shoes of various stiffness and damping.
    Qassem W
    Biomed Mater Eng; 2003; 13(2):167-80. PubMed ID: 12775907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational biomechanical analysis to assess the trade-off between chest deflection and spine translation in side impact.
    Pipkorn B; Subit D; Donlon JP; Sunnevång C
    Traffic Inj Prev; 2014; 15 Suppl 1():S231-7. PubMed ID: 25307392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A human model for road safety: from geometrical acquisition to model validation with radioss.
    Behr M; Arnoux PJ; Serre T; Bidal S; Kang HS; Thollon L; Cavallero C; Kayvantash K; Brunet C
    Comput Methods Biomech Biomed Engin; 2003 Aug; 6(4):263-73. PubMed ID: 12959760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the point mechanical impedance of fingerpad in vibration.
    Wu JZ; Dong RG; Welcome DE
    Med Eng Phys; 2006 Oct; 28(8):816-26. PubMed ID: 16426886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial orientation in bone samples and Young's modulus.
    Geraets WG; van Ruijven LJ; Verheij JG; van der Stelt PF; van Eijden TM
    J Biomech; 2008 Jul; 41(10):2206-10. PubMed ID: 18539283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.
    Little JP; Adam CJ
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.