These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 16995906)

  • 1. Glomeraceae and Gigasporaceae differ in their ability to form hyphal networks.
    Voets L; de la Providencia IE; Declerck S
    New Phytol; 2006; 172(2):185-8. PubMed ID: 16995906
    [No Abstract]   [Full Text] [Related]  

  • 2. Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups.
    de la Providencia IE; de Souza FA; Fernández F; Delmas NS; Declerck S
    New Phytol; 2005 Jan; 165(1):261-71. PubMed ID: 15720638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyphal healing mechanism in the arbuscular mycorrhizal fungi Scutellospora reticulata and Glomus clarum differs in response to severe physical stress.
    de la Providencia IE; Fernández F; Declerck S
    FEMS Microbiol Lett; 2007 Mar; 268(1):120-5. PubMed ID: 17263854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does percent root length colonization and soil hyphal length reflect the extent of colonization for all AMF?
    Hart MM; Reader RJ
    Mycorrhiza; 2002 Dec; 12(6):297-301. PubMed ID: 12466917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different levels of hyphal self-incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae.
    Pepe A; Giovannetti M; Sbrana C
    Mycorrhiza; 2016 May; 26(4):325-32. PubMed ID: 26630971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-anastomosing ability and vegetative incompatibility of Tuber borchii isolates.
    Sbrana C; Nuti MP; Giovannetti M
    Mycorrhiza; 2007 Nov; 17(8):667-675. PubMed ID: 17721790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of 233U and 33P uptake and translocation by the arbuscular mycorrhizal fungus Glomus intraradices in root organ culture conditions.
    Rufyikiri G; Declerck S; Thiry Y
    Mycorrhiza; 2004 Jul; 14(3):203-7. PubMed ID: 15197636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of prometryn and acetochlor on arbuscular mycorrhizal fungi and symbiotic system.
    Li X; Miao W; Gong C; Jiang H; Ma W; Zhu S
    Lett Appl Microbiol; 2013 Aug; 57(2):122-8. PubMed ID: 23593967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi.
    Nagahashi G; Douds DD
    Fungal Biol; 2011; 115(4-5):351-8. PubMed ID: 21530917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel in vitro cultivation system to produce and isolate soluble factors released from hyphae of arbuscular mycorrhizal fungi.
    Gadkar V; Driver JD; Rillig MC
    Biotechnol Lett; 2006 Jul; 28(14):1071-6. PubMed ID: 16802104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Influence of arbuscular mycorrhizal inoculation on growth and phoxim residue of carrot (Daucus carota L.)].
    Wang FY; Chen X; Sun XM; Shi ZY
    Huan Jing Ke Xue; 2010 Dec; 31(12):3075-80. PubMed ID: 21360902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi.
    Gavito ME; Olsson PA; Rouhier H; Medina-Peñafiel A; Jakobsen I; Bago A; Azcón-Aguilar C
    New Phytol; 2005 Oct; 168(1):179-88. PubMed ID: 16159332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-Specific Regulation of Nutrient Transport and Metabolism in Arbuscular Mycorrhizal Fungi.
    Kameoka H; Maeda T; Okuma N; Kawaguchi M
    Plant Cell Physiol; 2019 Oct; 60(10):2272-2281. PubMed ID: 31241164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arbuscular mycorrhiza colonization and development at suboptimal root zone temperature.
    Liu A; Wang B; Hamel C
    Mycorrhiza; 2004 Apr; 14(2):93-101. PubMed ID: 12748840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anastomosis behavior differs between asymbiotic and symbiotic hyphae of Rhizophagus clarus.
    Purin S; Morton JB
    Mycologia; 2013; 105(3):589-602. PubMed ID: 23233505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi.
    Scheublin TR; Sanders IR; Keel C; van der Meer JR
    ISME J; 2010 Jun; 4(6):752-63. PubMed ID: 20147983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monoxenic in vitro production and colonization potential of AM fungus Glomus intraradices.
    Mohamma A; Khan AG
    Indian J Exp Biol; 2002 Sep; 40(9):1087-91. PubMed ID: 12587745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium.
    Dupré de Boulois H; Delvaux B; Declerck S
    Environ Pollut; 2005 Apr; 134(3):515-24. PubMed ID: 15620597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system.
    Toussaint JP; St-Arnaud M; Charest C
    Can J Microbiol; 2004 Apr; 50(4):251-60. PubMed ID: 15213749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response to cadmium of Daucus carota hairy roots dual cultures with Glomus intraradices or Gigaspora margarita.
    Janousková M; Vosátka M
    Mycorrhiza; 2005 May; 15(3):217-24. PubMed ID: 15517423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.