These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 16995913)
1. Assessment of plants from the Brassicaceae family as genetic models for the study of nickel and zinc hyperaccumulation. Peer WA; Mahmoudian M; Freeman JL; Lahner B; Richards EL; Reeves RD; Murphy AS; Salt DE New Phytol; 2006; 172(2):248-60. PubMed ID: 16995913 [TBL] [Abstract][Full Text] [Related]
2. Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographical area. Peer WA; Mamoudian M; Lahner B; Reeves RD; Murphy AS; Salt DE New Phytol; 2003 Aug; 159(2):421-430. PubMed ID: 33873359 [TBL] [Abstract][Full Text] [Related]
3. Within and between population variation for zinc and nickel accumulation in two species of Thlaspi (Brassicaceae). Taylor SI; Macnair MR New Phytol; 2006; 169(3):505-13. PubMed ID: 16411953 [TBL] [Abstract][Full Text] [Related]
4. The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis. Rigola D; Fiers M; Vurro E; Aarts MG New Phytol; 2006; 170(4):753-65. PubMed ID: 16684236 [TBL] [Abstract][Full Text] [Related]
5. Investigation of heavy metal hyperaccumulation at the cellular level: development and characterization of Thlaspi caerulescens suspension cell lines. Klein MA; Sekimoto H; Milner MJ; Kochian LV Plant Physiol; 2008 Aug; 147(4):2006-16. PubMed ID: 18550685 [TBL] [Abstract][Full Text] [Related]
6. Transcription profiling of the metal-hyperaccumulator Thlaspi caerulescens (J. & C. PRESL). Plessl M; Rigola D; Hassinen V; Aarts MG; Schat H Z Naturforsch C J Biosci; 2005; 60(3-4):216-23. PubMed ID: 15948586 [TBL] [Abstract][Full Text] [Related]
7. Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Freeman JL; Garcia D; Kim D; Hopf A; Salt DE Plant Physiol; 2005 Mar; 137(3):1082-91. PubMed ID: 15734913 [TBL] [Abstract][Full Text] [Related]
8. Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens. Kozhevnikova AD; Seregin IV; Erlikh NT; Shevyreva TA; Andreev IM; Verweij R; Schat H New Phytol; 2014 Jul; 203(2):508-519. PubMed ID: 24750120 [TBL] [Abstract][Full Text] [Related]
9. Increased glutathione biosynthesis plays a role in nickel tolerance in thlaspi nickel hyperaccumulators. Freeman JL; Persans MW; Nieman K; Albrecht C; Peer W; Pickering IJ; Salt DE Plant Cell; 2004 Aug; 16(8):2176-91. PubMed ID: 15269333 [TBL] [Abstract][Full Text] [Related]
10. Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants. Deng TH; Cloquet C; Tang YT; Sterckeman T; Echevarria G; Estrade N; Morel JL; Qiu RL Environ Sci Technol; 2014 Oct; 48(20):11926-33. PubMed ID: 25222693 [TBL] [Abstract][Full Text] [Related]
11. Molecular mechanisms of metal hyperaccumulation in plants. Verbruggen N; Hermans C; Schat H New Phytol; 2009 Mar; 181(4):759-776. PubMed ID: 19192189 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of ZNT1 and NRAMP4 from the Ni Hyperaccumulator Fasani E; DalCorso G; Zorzi G; Agrimonti C; Fragni R; Visioli G; Furini A Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769323 [TBL] [Abstract][Full Text] [Related]
13. Histidine promotes the loading of nickel and zinc, but not of cadmium, into the xylem in Noccaea caerulescens. Kozhevnikova AD; Seregin IV; Verweij R; Schat H Plant Signal Behav; 2014; 9(9):e29580. PubMed ID: 25763695 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional effects of cadmium on iron homeostasis differ in calamine accessions of Noccaea caerulescens. Halimaa P; Blande D; Baltzi E; Aarts MGM; Granlund L; Keinänen M; Kärenlampi SO; Kozhevnikova AD; Peräniemi S; Schat H; Seregin IV; Tuomainen M; Tervahauta AI Plant J; 2019 Jan; 97(2):306-320. PubMed ID: 30288820 [TBL] [Abstract][Full Text] [Related]
15. QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens. Deniau AX; Pieper B; Ten Bookum WM; Lindhout P; Aarts MG; Schat H Theor Appl Genet; 2006 Sep; 113(5):907-20. PubMed ID: 16850314 [TBL] [Abstract][Full Text] [Related]
16. Genome Structure of the Heavy Metal Hyperaccumulator Noccaea caerulescens and Its Stability on Metalliferous and Nonmetalliferous Soils. Mandáková T; Singh V; Krämer U; Lysak MA Plant Physiol; 2015 Sep; 169(1):674-89. PubMed ID: 26195571 [TBL] [Abstract][Full Text] [Related]
17. Hyperaccumulation of Zn by Thlaspi caerulescens can ameliorate Zn toxicity in the rhizosphere of cocropped Thlaspi arvense. Whiting SN; Leake JR; McGrath SP; Baker AJ Environ Sci Technol; 2001 Aug; 35(15):3237-41. PubMed ID: 11506012 [TBL] [Abstract][Full Text] [Related]
18. Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator, Thlaspi caerulescens. Hassinen VH; Tuomainen M; Peräniemi S; Schat H; Kärenlampi SO; Tervahauta AI J Exp Bot; 2009; 60(1):187-96. PubMed ID: 19033549 [TBL] [Abstract][Full Text] [Related]
19. Epigenetic modifications preserve the hyperaccumulator Noccaea caerulescens from Ni geno-toxicity. Gullì M; Marchi L; Fragni R; Buschini A; Visioli G Environ Mol Mutagen; 2018 Jul; 59(6):464-475. PubMed ID: 29656392 [TBL] [Abstract][Full Text] [Related]
20. Construction and analysis of a Noccaea caerulescens TILLING population. Wang Y; Salt DE; Koornneef M; Aarts MGM BMC Plant Biol; 2022 Jul; 22(1):360. PubMed ID: 35869423 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]