BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 16995917)

  • 1. Does shade improve light interception efficiency? A comparison among seedlings from shade-tolerant and -intolerant temperate deciduous tree species.
    Delagrange S; Montpied P; Dreyer E; Messier C; Sinoquet H
    New Phytol; 2006; 172(2):293-304. PubMed ID: 16995917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasticity in seedling morphology, biomass allocation and physiology among ten temperate tree species in response to shade is related to shade tolerance and not leaf habit.
    Chmura DJ; Modrzyński J; Chmielarz P; Tjoelker MG
    Plant Biol (Stuttg); 2017 Mar; 19(2):172-182. PubMed ID: 27981788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acclimation of leaves to contrasting irradiance in juvenile trees differing in shade tolerance.
    Wyka T; Robakowski P; Zytkowiak R
    Tree Physiol; 2007 Sep; 27(9):1293-306. PubMed ID: 17545129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability.
    Delagrange S; Messier C; Lechowicz MJ; Dizengremel P
    Tree Physiol; 2004 Jul; 24(7):775-84. PubMed ID: 15123449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.
    Modrzyński J; Chmura DJ; Tjoelker MG
    Tree Physiol; 2015 Aug; 35(8):879-93. PubMed ID: 26116924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of leaf morphology, NSCs contents and C:N:P stoichiometry of Cunninghamia lanceolata and Schima superba to shading.
    Liu Q; Huang Z; Wang Z; Chen Y; Wen Z; Liu B; Tigabu M
    BMC Plant Biol; 2020 Jul; 20(1):354. PubMed ID: 32727357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional traits and plasticity in response to light in seedlings of four Iberian forest tree species.
    Sánchez-Gómez D; Valladares F; Zavala MA
    Tree Physiol; 2006 Nov; 26(11):1425-33. PubMed ID: 16877327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ontogeny, understorey light interception and simulated carbon gain of juvenile rainforest evergreens differing in shade tolerance.
    Lusk CH; Pérez-Millaqueo MM; Piper FI; Saldaña A
    Ann Bot; 2011 Sep; 108(3):419-28. PubMed ID: 21856637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trade-offs between seedling growth and survival in deciduous broadleaved trees in a temperate forest.
    Seiwa K
    Ann Bot; 2007 Mar; 99(3):537-44. PubMed ID: 17242042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthetic responses to understory shade and elevated carbon dioxide concentration in four northern hardwood tree species.
    Sefcik LT; Zak DR; Ellsworth DS
    Tree Physiol; 2006 Dec; 26(12):1589-99. PubMed ID: 17169898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Irradiance-induced plasticity in the hydraulic properties of saplings of different temperate broad-leaved forest tree species.
    Barigah TS; Ibrahim T; Bogard A; Faivre-Vuillin B; Lagneau LA; Montpied P; Dreyer E
    Tree Physiol; 2006 Dec; 26(12):1505-16. PubMed ID: 17169890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of physiological and morphological seedling traits associated with shade tolerance in introduced red oak (Quercus rubra) and native hardwood tree species in southwestern Germany.
    Kuehne C; Nosko P; Horwath T; Bauhus J
    Tree Physiol; 2014 Feb; 34(2):184-93. PubMed ID: 24531297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional lamina architecture alters light-harvesting efficiency in Fagus: a leaf-scale analysis.
    Fleck S; Niinemets U; Cescatti A; Tenhunen JD
    Tree Physiol; 2003 Jun; 23(9):577-89. PubMed ID: 12750051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light compensation points in shade-grown seedlings of deciduous broadleaf tree species with different successional traits raised under elevated CO2.
    Kitao M; Hida T; Eguchi N; Tobita H; Utsugi H; Uemura A; Kitaoka S; Koike T
    Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():22-7. PubMed ID: 26404633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Canopy structure and light interception in Quercus petraea seedlings in relation to light regime and plant density.
    Farque L; Sinoquet H; Colin F
    Tree Physiol; 2001 Nov; 21(17):1257-67. PubMed ID: 11696413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance.
    Niinemets U; Kull O; Tenhunen JD
    Tree Physiol; 1998 Oct; 18(10):681-696. PubMed ID: 12651418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: implications for foliage morphological plasticity.
    Niinemets U; Kull O
    Tree Physiol; 1998 Jul; 18(7):467-479. PubMed ID: 12651358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The combined impacts of deep shade and drought on the growth and biomass allocation of shade-tolerant woody seedlings.
    Sack L; Grubb PJ
    Oecologia; 2002 Apr; 131(2):175-185. PubMed ID: 28547684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosynthetic acclimation of overstory Populus tremuloides and understory Acer saccharum to elevated atmospheric CO2 concentration: interactions with shade and soil nitrogen.
    Kubiske ME; Zak DR; Pregitzer KS; Takeuchi Y
    Tree Physiol; 2002 Apr; 22(5):321-9. PubMed ID: 11960756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthesis, photoprotection, and growth of shade-tolerant tropical tree seedlings under full sunlight.
    Krause GH; Winter K; Matsubara S; Krause B; Jahns P; Virgo A; Aranda J; García M
    Photosynth Res; 2012 Sep; 113(1-3):273-85. PubMed ID: 22466529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.