These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 16996099)

  • 1. A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.
    Ling H; Luo E; Dai W
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1511-4. PubMed ID: 16996099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study of the influence of different resonators on thermoacoustic conversion performance of a thermoacoustic-Stirling heat engine.
    Luo EC; Ling H; Dai W; Yu GY
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1507-9. PubMed ID: 16996100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine.
    Luo EC; Dai W; Zhang Y; Ling H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1531-3. PubMed ID: 16979679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoacoustic power conversion using a piezoelectric transducer.
    Jensen C; Raspet R
    J Acoust Soc Am; 2010 Jul; 128(1):98-103. PubMed ID: 20649205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of the impedance matrix of a thermoacoustic core: applications to the design of thermoacoustic engines.
    Bannwart FC; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2013 May; 133(5):2650-60. PubMed ID: 23654373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical prediction of the onset of thermoacoustic instability from the experimental transfer matrix of a thermoacoustic core.
    Guedra M; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2011 Jul; 130(1):145-52. PubMed ID: 21786885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A thermoacoustic-Stirling heat engine: detailed study.
    Backhaus S; Swift GW
    J Acoust Soc Am; 2000 Jun; 107(6):3148-66. PubMed ID: 10875360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low Mach number analysis of idealized thermoacoustic engines with numerical solution.
    Hireche O; Weisman C; Baltean-Carlès D; Le Quéré P; Bauwens L
    J Acoust Soc Am; 2010 Dec; 128(6):3438-48. PubMed ID: 21218877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of a thermoacoustic-Stirling engine connected to a piston-crank-flywheel assembly.
    Penelet G; Watanabe T; Biwa T
    J Acoust Soc Am; 2021 Mar; 149(3):1674. PubMed ID: 33765805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation on the different types of resonators in the thermoacoustic Stirling prime mover.
    Xie X; Li Q; Li Z; Li Q
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1503-5. PubMed ID: 16987536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of resonance tube geometry shape on performance of thermoacoustic engine.
    Bao R; Chen G; Tang K; Jia Z; Cao W
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1519-21. PubMed ID: 17056084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of a resistive load on the starting performance of a standing wave thermoacoustic engine: A numerical study.
    Ma L; Weisman C; Baltean-Carlès D; Delbende I; Bauwens L
    J Acoust Soc Am; 2015 Aug; 138(2):847-57. PubMed ID: 26328701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Helmholtz-like resonators for thermoacoustic prime movers.
    Andersen BJ; Symko OG
    J Acoust Soc Am; 2009 Feb; 125(2):787-92. PubMed ID: 19206856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The experimental studies of thermoacoustic cooler.
    Sakamoto S; Watanabe Y
    Ultrasonics; 2004 Apr; 42(1-9):53-6. PubMed ID: 15047261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic thermoacoustic energy converter.
    Flitcroft M; Symko OG
    Ultrasonics; 2013 Mar; 53(3):672-6. PubMed ID: 23218928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the linear oscillation dynamics of Fluidyne engines.
    Ito M; Murti P; Tsuboi S; Shoji E; Biwa T
    J Acoust Soc Am; 2022 Feb; 151(2):1133. PubMed ID: 35232089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of acoustic output power in a traveling wave engine.
    Miwa M; Sumi T; Biwa T; Ueda Y; Yazaki T
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1527-9. PubMed ID: 16996552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristic-based non-linear simulation of large-scale standing-wave thermoacoustic engine.
    Abd El-Rahman AI; Abdel-Rahman E
    J Acoust Soc Am; 2014 Aug; 136(2):649-58. PubMed ID: 25096100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and experiment on a mini cascade thermoacoustic engine.
    Hu Z; Li Q; Xie X; Zhou G; Li Q
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1515-7. PubMed ID: 16970969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low temperature difference thermoacoustic prime mover with asymmetric multi-stage loop configuration.
    Jin T; Yang R; Wang Y; Feng Y; Tang K
    Sci Rep; 2017 Aug; 7(1):7665. PubMed ID: 28794455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.