These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 16996099)

  • 21. Performance evaluation of a liquid-sodium thermoacoustic engine with magnetohydrodynamic electricity generation based upon the Swift model.
    Huang J; Yang R; Wang J; Yang Y; Xu J; Luo E
    J Acoust Soc Am; 2023 Aug; 154(2):682-691. PubMed ID: 37550241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system.
    Sowale A; Kolios AJ; Fidalgo B; Somorin T; Parker A; Williams L; Collins M; McAdam E; Tyrrel S
    Energy Convers Manag; 2018 Jun; 165():528-540. PubMed ID: 29861520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Erratum: Effect of evaporation and condensation on a thermoacoustic engine: A Lagrangian simulation approach [J. Acoust. Soc. Am. 141 (6), 4398-4407 (2017)].
    Yasui K; Izu N
    J Acoust Soc Am; 2020 Jan; 147(1):267. PubMed ID: 32006972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solar driven Stirling engine - chemical heat pump - absorption refrigerator hybrid system as environmental friendly energy system.
    Açıkkalp E; Kandemir SY; Ahmadi MH
    J Environ Manage; 2019 Feb; 232():455-461. PubMed ID: 30502614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acoustic streaming in annular thermoacoustic prime-movers.
    Gusev V; Job S; Bailliet H; Lotton P; Bruneau M
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):934-45. PubMed ID: 11008797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-method modeling to predict the onset conditions and resonance of the piezo coupled thermoacoustic engine.
    Ahmed F; Yu G; Luo E
    J Acoust Soc Am; 2022 Jun; 151(6):4180. PubMed ID: 35778176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental and numerical investigation of standing-wave thermoacoustic instability under transcritical temperature conditions.
    Martinez A; Migliorino MT; Scalo C; Heister SD
    J Acoust Soc Am; 2021 Oct; 150(4):2900. PubMed ID: 34717461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and validation of a software application to analyze thermal and kinematic multimodels of Stirling engines.
    Auñón JA; Pérez JM; Martín MJ; Auñón F; Nuñez D
    Heliyon; 2023 Sep; 9(9):e18487. PubMed ID: 37662715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental and theoretical study of processes leading to steady-state sound in annular thermoacoustic engines.
    Penelet G; Gusev V; Lotton P; Bruneau M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016625. PubMed ID: 16090125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beta Type Stirling Engine. Schmidt and Finite Physical Dimensions Thermodynamics Methods Faced to Experiments.
    Dobre C; Grosu L; Costea M; Constantin M
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical study on thermal field of microwave ablation with water-cooled antenna.
    Lu Y; Nan Q; Li L; Liu Y
    Int J Hyperthermia; 2009 Mar; 25(2):108-15. PubMed ID: 19337911
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A cascade thermoacoustic engine.
    Gardner DL; Swift GW
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):1905-19. PubMed ID: 14587591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An acoustic streaming instability in thermoacoustic devices utilizing jet pumps.
    Backhaus S; Swift GW
    J Acoust Soc Am; 2003 Mar; 113(3):1317-24. PubMed ID: 12656366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Open cycle traveling wave thermoacoustics: mean temperature difference at the regenerator interface.
    Weiland NT; Zinn BT
    J Acoust Soc Am; 2003 Nov; 114(5):2791-8. PubMed ID: 14650014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Microwave thermoacoustic signal analysis of biological tissues based on the coupling of multifield].
    Tao C; Song T; Liu G; Yan J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):44-8. PubMed ID: 18435254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermoacoustic modeling of Fluidyne engine with a gas-coupled water pumping line.
    Biwa T; Prastowo M; Shoji E
    J Acoust Soc Am; 2022 Oct; 152(4):2212. PubMed ID: 36319227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of evaporation and condensation on a thermoacoustic engine: A Lagrangian simulation approach.
    Yasui K; Izu N
    J Acoust Soc Am; 2017 Jun; 141(6):4398. PubMed ID: 28618792
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature-dependent maximization of work and efficiency in a degeneracy-assisted quantum Stirling heat engine.
    Chatterjee S; Koner A; Chatterjee S; Kumar C
    Phys Rev E; 2021 Jun; 103(6-1):062109. PubMed ID: 34271723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Material Change on Stirnol Engine: A Combination of NiTiNOL (Shape Memory Alloy) and Gamma Stirling Engine.
    Arif H; Shah A; Ratlamwala TAH; Kamal K; Khan MA
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Review on the conversion of thermoacoustic power into electricity.
    Timmer MAG; de Blok K; van der Meer TH
    J Acoust Soc Am; 2018 Feb; 143(2):841. PubMed ID: 29495704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.