These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 16996100)

  • 1. Experimental study of the influence of different resonators on thermoacoustic conversion performance of a thermoacoustic-Stirling heat engine.
    Luo EC; Ling H; Dai W; Yu GY
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1507-9. PubMed ID: 16996100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine.
    Luo EC; Dai W; Zhang Y; Ling H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1531-3. PubMed ID: 16979679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.
    Ling H; Luo E; Dai W
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1511-4. PubMed ID: 16996099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of acoustic output power in a traveling wave engine.
    Miwa M; Sumi T; Biwa T; Ueda Y; Yazaki T
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1527-9. PubMed ID: 16996552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A thermoacoustic-Stirling heat engine: detailed study.
    Backhaus S; Swift GW
    J Acoust Soc Am; 2000 Jun; 107(6):3148-66. PubMed ID: 10875360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helmholtz-like resonators for thermoacoustic prime movers.
    Andersen BJ; Symko OG
    J Acoust Soc Am; 2009 Feb; 125(2):787-92. PubMed ID: 19206856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of resonance tube geometry shape on performance of thermoacoustic engine.
    Bao R; Chen G; Tang K; Jia Z; Cao W
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1519-21. PubMed ID: 17056084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and experiment on a mini cascade thermoacoustic engine.
    Hu Z; Li Q; Xie X; Zhou G; Li Q
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1515-7. PubMed ID: 16970969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation on the different types of resonators in the thermoacoustic Stirling prime mover.
    Xie X; Li Q; Li Z; Li Q
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1503-5. PubMed ID: 16987536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurements of the impedance matrix of a thermoacoustic core: applications to the design of thermoacoustic engines.
    Bannwart FC; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2013 May; 133(5):2650-60. PubMed ID: 23654373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of a resistive load on the starting performance of a standing wave thermoacoustic engine: A numerical study.
    Ma L; Weisman C; Baltean-Carlès D; Delbende I; Bauwens L
    J Acoust Soc Am; 2015 Aug; 138(2):847-57. PubMed ID: 26328701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustical power amplification and damping by temperature gradients.
    Biwa T; Komatsu R; Yazaki T
    J Acoust Soc Am; 2011 Jan; 129(1):132-7. PubMed ID: 21302995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental demonstration of thermoacoustic energy conversion in a resonator.
    Biwa T; Tashiro Y; Mizutani U; Kozuka M; Yazaki T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066304. PubMed ID: 15244723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical prediction of the onset of thermoacoustic instability from the experimental transfer matrix of a thermoacoustic core.
    Guedra M; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2011 Jul; 130(1):145-52. PubMed ID: 21786885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy flow measurements in acoustic waves in a duct.
    Biwa T
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1523-6. PubMed ID: 16987538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The experimental studies of thermoacoustic cooler.
    Sakamoto S; Watanabe Y
    Ultrasonics; 2004 Apr; 42(1-9):53-6. PubMed ID: 15047261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-method modeling to predict the onset conditions and resonance of the piezo coupled thermoacoustic engine.
    Ahmed F; Yu G; Luo E
    J Acoust Soc Am; 2022 Jun; 151(6):4180. PubMed ID: 35778176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of harmonics in a model of thermoacoustic refrigerator based on an acoustic metamaterial.
    Fan L; Ding J; Zhu JJ; Chen Z; Zhang SY; Zhang H; Li XJ
    J Acoust Soc Am; 2015 Oct; 138(4):EL435-40. PubMed ID: 26520357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear frequency shifts in acoustical resonators with varying cross sections.
    Hamilton MF; Ilinskii YA; Zabolotskaya EA
    J Acoust Soc Am; 2009 Mar; 125(3):1310-9. PubMed ID: 19275288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cascade thermoacoustic engine.
    Gardner DL; Swift GW
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):1905-19. PubMed ID: 14587591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.