BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 16996179)

  • 21. Integration of silicon and secondary metabolites in plants: a significant association in stress tolerance.
    Ahanger MA; Bhat JA; Siddiqui MH; Rinklebe J; Ahmad P
    J Exp Bot; 2020 Dec; 71(21):6758-6774. PubMed ID: 32585681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heavy metals alter the potency of medicinal plants.
    Nasim SA; Dhir B
    Rev Environ Contam Toxicol; 2010; 203():139-49. PubMed ID: 19957120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fascinating impact of silicon and silicon transporters in plants: A review.
    Gaur S; Kumar J; Kumar D; Chauhan DK; Prasad SM; Srivastava PK
    Ecotoxicol Environ Saf; 2020 Oct; 202():110885. PubMed ID: 32650140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms to cope with arsenic or cadmium excess in plants.
    Verbruggen N; Hermans C; Schat H
    Curr Opin Plant Biol; 2009 Jun; 12(3):364-72. PubMed ID: 19501016
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants.
    Etesami H; Jeong BR
    Ecotoxicol Environ Saf; 2018 Jan; 147():881-896. PubMed ID: 28968941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the beneficial role of silicon to organisms: a case study on the importance of silicon chemistry to metal accumulation in yeast.
    Brasser HJ; Krijger GC; Wolterbeek HT
    Biol Trace Elem Res; 2008 Oct; 125(1):81-95. PubMed ID: 18473125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of active silicon uptake by rice on 29Si fractionation in various plant parts.
    Köster JR; Bol R; Leng MJ; Parker AG; Sloane HJ; Ma JF
    Rapid Commun Mass Spectrom; 2009 Aug; 23(16):2398-402. PubMed ID: 19603477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Can silicon partially alleviate micronutrient deficiency in plants? A review.
    Hernandez-Apaolaza L
    Planta; 2014 Sep; 240(3):447-58. PubMed ID: 25011646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network.
    Quan LJ; Zhang B; Shi WW; Li HY
    J Integr Plant Biol; 2008 Jan; 50(1):2-18. PubMed ID: 18666947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Silicon Regulates Potential Genes Involved in Major Physiological Processes in Plants to Combat Stress.
    Manivannan A; Ahn YK
    Front Plant Sci; 2017; 8():1346. PubMed ID: 28824681
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The relationship between metal toxicity and cellular redox imbalance.
    Sharma SS; Dietz KJ
    Trends Plant Sci; 2009 Jan; 14(1):43-50. PubMed ID: 19070530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silicon-mediated abiotic and biotic stress mitigation in plants: Underlying mechanisms and potential for stress resilient agriculture.
    Ranjan A; Sinha R; Bala M; Pareek A; Singla-Pareek SL; Singh AK
    Plant Physiol Biochem; 2021 Jun; 163():15-25. PubMed ID: 33799014
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biotic and heavy metal stress response in plants: evidence for common signals.
    Mithöfer A; Schulze B; Boland W
    FEBS Lett; 2004 May; 566(1-3):1-5. PubMed ID: 15147858
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silicon transporters in higher plants.
    Ma JF
    Adv Exp Med Biol; 2010; 679():99-109. PubMed ID: 20666227
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioengineering plant resistance to abiotic stresses by the global calcium signal system.
    Hong-Bo S; Li-Ye C; Ming-An S; Shi-Qing L; Ji-Cheng Y
    Biotechnol Adv; 2008; 26(6):503-10. PubMed ID: 18775620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals.
    Rajkumar M; Vara Prasad MN; Freitas H; Ae N
    Crit Rev Biotechnol; 2009; 29(2):120-30. PubMed ID: 19514893
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uptake and translocation of metals in Spinacia oleracea L. grown on tannery sludge-amended and contaminated soils: effect on lipid peroxidation, morpho-anatomical changes and antioxidants.
    Sinha S; Mallick S; Misra RK; Singh S; Basant A; Gupta AK
    Chemosphere; 2007 Feb; 67(1):176-87. PubMed ID: 17095039
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent developments in the application of proteomics to the analysis of plant responses to heavy metals.
    Ahsan N; Renaut J; Komatsu S
    Proteomics; 2009 May; 9(10):2602-21. PubMed ID: 19405030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomarkers in aquatic plants: selection and utility.
    Brain RA; Cedergreen N
    Rev Environ Contam Toxicol; 2009; 198():49-109. PubMed ID: 19253039
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitigation of climate change and environmental hazards in plants: Potential role of the beneficial metalloid silicon.
    Bokor B; Santos CS; Kostoláni D; Machado J; da Silva MN; Carvalho SMP; Vaculík M; Vasconcelos MW
    J Hazard Mater; 2021 Aug; 416():126193. PubMed ID: 34492957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.