BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 16996291)

  • 1. Structural basis for processivity and single-strand specificity of RNase II.
    Zuo Y; Vincent HA; Zhang J; Wang Y; Deutscher MP; Malhotra A
    Mol Cell; 2006 Oct; 24(1):149-56. PubMed ID: 16996291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex.
    Frazão C; McVey CE; Amblar M; Barbas A; Vonrhein C; Arraiano CM; Carrondo MA
    Nature; 2006 Sep; 443(7107):110-4. PubMed ID: 16957732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNase R mutants elucidate the catalysis of structured RNA: RNA-binding domains select the RNAs targeted for degradation.
    Matos RG; Barbas A; Arraiano CM
    Biochem J; 2009 Sep; 423(2):291-301. PubMed ID: 19630750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical characterization of the RNase II family of exoribonucleases from the human pathogens Salmonella typhimurium and Streptococcus pneumoniae.
    Domingues S; Matos RG; Reis FP; Fialho AM; Barbas A; Arraiano CM
    Biochemistry; 2009 Dec; 48(50):11848-57. PubMed ID: 19863111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis of an RNA internal loop as a reactivity epitope for Escherichia coli ribonuclease III substrates.
    Calin-Jageman I; Nicholson AW
    Biochemistry; 2003 May; 42(17):5025-34. PubMed ID: 12718545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Swapping the domains of exoribonucleases RNase II and RNase R: conferring upon RNase II the ability to degrade ds RNA.
    Matos RG; Barbas A; Gómez-Puertas P; Arraiano CM
    Proteins; 2011 Jun; 79(6):1853-67. PubMed ID: 21465561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the functional domains of Escherichia coli RNase II.
    Amblar M; Barbas A; Fialho AM; Arraiano CM
    J Mol Biol; 2006 Jul; 360(5):921-33. PubMed ID: 16806266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single mutation in Escherichia coli ribonuclease II inactivates the enzyme without affecting RNA binding.
    Amblar M; Arraiano CM
    FEBS J; 2005 Jan; 272(2):363-74. PubMed ID: 15654875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of Escherichia coli RNase D, an exoribonuclease involved in structured RNA processing.
    Zuo Y; Wang Y; Malhotra A
    Structure; 2005 Jul; 13(7):973-84. PubMed ID: 16004870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing ribonucleases in vitro examples of synergies between biochemical and structural analysis.
    Arraiano CM; Barbas A; Amblar M
    Methods Enzymol; 2008; 447():131-60. PubMed ID: 19161842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization of the RNase E S1 domain and identification of its oligonucleotide-binding and dimerization interfaces.
    Schubert M; Edge RE; Lario P; Cook MA; Strynadka NC; Mackie GA; McIntosh LP
    J Mol Biol; 2004 Jul; 341(1):37-54. PubMed ID: 15312761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the active subunit of the yeast exosome core, Rrp44: diverse modes of substrate recruitment in the RNase II nuclease family.
    Lorentzen E; Basquin J; Tomecki R; Dziembowski A; Conti E
    Mol Cell; 2008 Mar; 29(6):717-28. PubMed ID: 18374646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNase II structure completes group portrait of 3' exoribonucleases.
    Grossman D; van Hoof A
    Nat Struct Mol Biol; 2006 Sep; 13(9):760-1. PubMed ID: 16955096
    [No Abstract]   [Full Text] [Related]  

  • 14. The structure and enzymatic properties of a novel RNase II family enzyme from Deinococcus radiodurans.
    Schmier BJ; Seetharaman J; Deutscher MP; Hunt JF; Malhotra A
    J Mol Biol; 2012 Jan; 415(3):547-59. PubMed ID: 22133431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The archaeal exosome core is a hexameric ring structure with three catalytic subunits.
    Lorentzen E; Walter P; Fribourg S; Evguenieva-Hackenberg E; Klug G; Conti E
    Nat Struct Mol Biol; 2005 Jul; 12(7):575-81. PubMed ID: 15951817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro.
    Meng W; Nicholson AW
    Biochem J; 2008 Feb; 410(1):39-48. PubMed ID: 17953512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of endoribonucleases in the regulation of RNase R.
    Cairrão F; Arraiano CM
    Biochem Biophys Res Commun; 2006 May; 343(3):731-7. PubMed ID: 16563345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the RRM domain in the activity, structure and stability of poly(A)-specific ribonuclease.
    Zhang A; Liu WF; Yan YB
    Arch Biochem Biophys; 2007 May; 461(2):255-62. PubMed ID: 17391638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensing of 5' monophosphate by Escherichia coli RNase G can significantly enhance association with RNA and stimulate the decay of functional mRNA transcripts in vivo.
    Jourdan SS; McDowall KJ
    Mol Microbiol; 2008 Jan; 67(1):102-15. PubMed ID: 18078441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The processive reaction mechanism of ribonuclease II.
    Cannistraro VJ; Kennell D
    J Mol Biol; 1994 Nov; 243(5):930-43. PubMed ID: 7966309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.