These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 16996478)

  • 21. Role of oxidative stress in pancreatic beta-cell dysfunction.
    Kajimoto Y; Kaneto H
    Ann N Y Acad Sci; 2004 Apr; 1011():168-76. PubMed ID: 15126294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chronic exposure of betaTC-6 cells to supraphysiologic concentrations of glucose decreases binding of the RIPE3b1 insulin gene transcription activator.
    Poitout V; Olson LK; Robertson RP
    J Clin Invest; 1996 Feb; 97(4):1041-6. PubMed ID: 8613527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glucose rapidly and reversibly decreases INS-1 cell insulin gene transcription via decrements in STF-1 and C1 activator transcription factor activity.
    Olson LK; Qian J; Poitout V
    Mol Endocrinol; 1998 Feb; 12(2):207-19. PubMed ID: 9482663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rho-kinase inhibition enhances axonal regeneration after peripheral nerve injury.
    Hiraga A; Kuwabara S; Doya H; Kanai K; Fujitani M; Taniguchi J; Arai K; Mori M; Hattori T; Yamashita T
    J Peripher Nerv Syst; 2006 Sep; 11(3):217-24. PubMed ID: 16930283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of pancreatic transcription factors in maintenance of mature β-cell function.
    Kaneto H; Matsuoka TA
    Int J Mol Sci; 2015 Mar; 16(3):6281-97. PubMed ID: 25794287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduction of insulin gene transcription in HIT-T15 beta cells chronically exposed to a supraphysiologic glucose concentration is associated with loss of STF-1 transcription factor expression.
    Olson LK; Sharma A; Peshavaria M; Wright CV; Towle HC; Rodertson RP; Stein R
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9127-31. PubMed ID: 7568086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic β-cells.
    Zhao X; Mohan R; Özcan S; Tang X
    J Biol Chem; 2012 Sep; 287(37):31155-64. PubMed ID: 22733810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidative stress and the JNK pathway as a potential therapeutic target for diabetes.
    Kaneto H; Kawamori D; Nakatani Y; Gorogawa S; Matsuoka TA
    Drug News Perspect; 2004 Sep; 17(7):447-53. PubMed ID: 15514704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of human insulin gene transcription and MafA transcriptional activity by the dual leucine zipper kinase.
    Stahnke MJ; Dickel C; Schröder S; Kaiser D; Blume R; Stein R; Pouponnot C; Oetjen E
    Cell Signal; 2014 Sep; 26(9):1792-9. PubMed ID: 24726898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of Cdx-2 in insulin and proglucagon gene expression: a study using the RIN-1056A cell line with an inducible gene expression system.
    Zhao Y; Liu T; Zhang N; Yi F; Wang Q; Fantus IG; Jin T
    J Endocrinol; 2005 Jul; 186(1):179-92. PubMed ID: 16002547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of diabetes mellitus in aging transgenic mice following suppression of pancreatic homeoprotein IDX-1.
    Thomas MK; Devon ON; Lee JH; Peter A; Schlosser DA; Tenser MS; Habener JF
    J Clin Invest; 2001 Jul; 108(2):319-29. PubMed ID: 11457885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of insulin as a novel retinoic acid receptor-related orphan receptor α target gene.
    Kuang J; Hou X; Zhang J; Chen Y; Su Z
    FEBS Lett; 2014 Mar; 588(6):1071-9. PubMed ID: 24583012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Rho/Rho-kinase].
    Kawanami D
    Nihon Rinsho; 2016 Apr; 74 Suppl 2():77-83. PubMed ID: 27266066
    [No Abstract]   [Full Text] [Related]  

  • 34. Multiple kinases regulate mafA expression in the pancreatic beta cell line MIN6.
    Vanderford NL; Cantrell JE; Popa GJ; Ozcan S
    Arch Biochem Biophys; 2008 Dec; 480(2):138-42. PubMed ID: 18948074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Rho-kinase inhibitors for ischemic heart disease].
    Mohri M; Shimokawa H
    Nihon Rinsho; 2003 May; 61 Suppl 5():874-9. PubMed ID: 12809048
    [No Abstract]   [Full Text] [Related]  

  • 36. Src family kinases promote vessel stability by antagonizing the Rho/ROCK pathway.
    Im E; Kazlauskas A
    J Biol Chem; 2007 Oct; 282(40):29122-9. PubMed ID: 17684019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Staurosporine stimulates insulin gene expression via CRE dependent manner.
    Shinozuka Y; Okada M; Yasuda N; Yokoyama KK
    Nucleic Acids Res Suppl; 2003; (3):301-2. PubMed ID: 14510500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An MBoC favorite: Cell contact-dependent regulation of epithelial-myofibroblast transition via the Rho-Rho-kinase-phospho-myosin pathway.
    Ivanov AI
    Mol Biol Cell; 2012 Jul; 23(14):2621. PubMed ID: 22798386
    [No Abstract]   [Full Text] [Related]  

  • 39. [Discovery of novel SPAK inhibitors that block WNK kinase signaling to cation chloride transporters].
    Kikuchi E
    Nihon Jinzo Gakkai Shi; 2015; 57(8):1319-22. PubMed ID: 26817159
    [No Abstract]   [Full Text] [Related]  

  • 40. Increasingly selective pharmacologic targets in cardiovascular disease.
    Paoletti R; Cignarella A
    Curr Atheroscler Rep; 2007 Aug; 9(2):89-90. PubMed ID: 17877914
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.