These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 16996552)

  • 1. Measurement of acoustic output power in a traveling wave engine.
    Miwa M; Sumi T; Biwa T; Ueda Y; Yazaki T
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1527-9. PubMed ID: 16996552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study of the influence of different resonators on thermoacoustic conversion performance of a thermoacoustic-Stirling heat engine.
    Luo EC; Ling H; Dai W; Yu GY
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1507-9. PubMed ID: 16996100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine.
    Luo EC; Dai W; Zhang Y; Ling H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1531-3. PubMed ID: 16979679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The experimental studies of thermoacoustic cooler.
    Sakamoto S; Watanabe Y
    Ultrasonics; 2004 Apr; 42(1-9):53-6. PubMed ID: 15047261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A thermoacoustic-Stirling heat engine: detailed study.
    Backhaus S; Swift GW
    J Acoust Soc Am; 2000 Jun; 107(6):3148-66. PubMed ID: 10875360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and experiment on a mini cascade thermoacoustic engine.
    Hu Z; Li Q; Xie X; Zhou G; Li Q
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1515-7. PubMed ID: 16970969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements of acoustic particle velocity in a coaxial duct and its application to a traveling-wave thermoacoustic heat engine.
    Morii J; Biwa T; Yazaki T
    Rev Sci Instrum; 2014 Sep; 85(9):094902. PubMed ID: 25273759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.
    Ling H; Luo E; Dai W
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1511-4. PubMed ID: 16996099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-life vibration-free 4.5 K sorption cooler for space applications.
    Burger JF; ter Brake HJ; Holland HJ; Meijer RJ; Veenstra TT; Venhorst GC; Lozano-Castelló D; Coesel M; Sirbi A
    Rev Sci Instrum; 2007 Jun; 78(6):065102. PubMed ID: 17614633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cascade thermoacoustic engine.
    Gardner DL; Swift GW
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):1905-19. PubMed ID: 14587591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Open cycle traveling wave thermoacoustics: mean temperature difference at the regenerator interface.
    Weiland NT; Zinn BT
    J Acoust Soc Am; 2003 Nov; 114(5):2791-8. PubMed ID: 14650014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of a resistive load on the starting performance of a standing wave thermoacoustic engine: A numerical study.
    Ma L; Weisman C; Baltean-Carlès D; Delbende I; Bauwens L
    J Acoust Soc Am; 2015 Aug; 138(2):847-57. PubMed ID: 26328701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High power universal piezoelectric transformer.
    Priya S; Kim H; Ural S; Uchino K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Apr; 53(4):810-6. PubMed ID: 16615586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of traveling thermoacoustic shock waves (L).
    Biwa T; Takahashi T; Yazaki T
    J Acoust Soc Am; 2011 Dec; 130(6):3558-61. PubMed ID: 22225011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helmholtz-like resonators for thermoacoustic prime movers.
    Andersen BJ; Symko OG
    J Acoust Soc Am; 2009 Feb; 125(2):787-92. PubMed ID: 19206856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance evaluation of a liquid-sodium thermoacoustic engine with magnetohydrodynamic electricity generation based upon the Swift model.
    Huang J; Yang R; Wang J; Yang Y; Xu J; Luo E
    J Acoust Soc Am; 2023 Aug; 154(2):682-691. PubMed ID: 37550241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between ambient temperature and heat flux in the scrotal skin.
    Song GS; Seo JT
    Int J Androl; 2009 Aug; 32(4):288-94. PubMed ID: 18217986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of ambient temperature on power at anaerobic threshold determined based on blood lactate concentration and myoelectric signals.
    Tyka A; Pałka T; Tyka A; Cisoń T; Szyguła Z
    Int J Occup Med Environ Health; 2009; 22(1):1-6. PubMed ID: 19398412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skin temperature feedback optimizes microclimate cooling.
    Stephenson LA; Vernieuw CR; Leammukda W; Kolka MA
    Aviat Space Environ Med; 2007 Apr; 78(4):377-82. PubMed ID: 17484339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
    Brewin MP; Pike LC; Rowland DE; Birch MJ
    Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.