BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 16997319)

  • 1. Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis.
    Michaud MR; Denlinger DL
    J Insect Physiol; 2006 Oct; 52(10):1073-82. PubMed ID: 16997319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p38 MAPK is a likely component of the signal transduction pathway triggering rapid cold hardening in the flesh fly Sarcophaga crassipalpis.
    Fujiwara Y; Denlinger DL
    J Exp Biol; 2007 Sep; 210(Pt 18):3295-300. PubMed ID: 17766307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): a metabolomic comparison.
    Michaud MR; Denlinger DL
    J Comp Physiol B; 2007 Oct; 177(7):753-63. PubMed ID: 17576567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid cold hardening elicits changes in brain protein profiles of the flesh fly, Sarcophaga crassipalpis.
    Li A; Denlinger DL
    Insect Mol Biol; 2008 Sep; 17(5):565-72. PubMed ID: 18828842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal expression patterns of diapause-associated genes in flesh fly pupae from the onset of diapause through post-diapause quiescence.
    Hayward SA; Pavlides SC; Tammariello SP; Rinehart JP; Denlinger DL
    J Insect Physiol; 2005 Jun; 51(6):631-40. PubMed ID: 15993127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High temperature and hexane break pupal diapause in the flesh fly, Sarcophaga crassipalpis, by activating ERK/MAPK.
    Fujiwara Y; Denlinger DL
    J Insect Physiol; 2007 Dec; 53(12):1276-82. PubMed ID: 17681525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infradian cycles of oxygen consumption in diapausing pupae of the flesh fly, Sarcophaga crassipalpis, monitored by a scanning microrespirographic method.
    Sláma K; Denlinger DL
    Arch Insect Biochem Physiol; 1992; 20(2):135-43. PubMed ID: 1504318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid elevation of Inos and decreases in abundance of other proteins at pupal diapause termination in the flesh fly Sarcophaga crassipalpis.
    Li A; Michaud MR; Denlinger DL
    Biochim Biophys Acta; 2009 Apr; 1794(4):663-8. PubMed ID: 19118649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rapid cold-hardening process in insects.
    Lee RE; Chen CP; Denlinger DL
    Science; 1987 Dec; 238(4832):1415-7. PubMed ID: 17800568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High temperature pulses decrease indirect chilling injury and elevate ATP levels in the flesh fly, Sarcophaga crassipalpis.
    Dollo VH; Yi SX; Lee RE
    Cryobiology; 2010 Jun; 60(3):351-3. PubMed ID: 20233586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuropeptide-like precursor 4 is uniquely expressed during pupal diapause in the flesh fly.
    Li A; Rinehart JP; Denlinger DL
    Peptides; 2009 Mar; 30(3):518-21. PubMed ID: 19007830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal lipids of sugarbeet root maggot (Tetanops myopaeformis) larvae: effects of multi-year cold storage.
    Chirumamilla A; Buckner JS; Yocum GD; Fatland CL; Boetel MA
    Comp Biochem Physiol B Biochem Mol Biol; 2010 Sep; 157(1):73-9. PubMed ID: 20580676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low temperature acclimated populations of the grain aphid Sitobion avenae retain ability to rapidly cold harden with enhanced fitness.
    Powell SJ; Bale JS
    J Exp Biol; 2005 Jul; 208(Pt 13):2615-20. PubMed ID: 15961747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics of the flesh fly brain reveals an abundance of upregulated heat shock proteins during pupal diapause.
    Li AQ; Popova-Butler A; Dean DH; Denlinger DL
    J Insect Physiol; 2007 Apr; 53(4):385-91. PubMed ID: 17349654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane remodeling and glucose in Drosophila melanogaster: a test of rapid cold-hardening and chilling tolerance hypotheses.
    MacMillan HA; Guglielmo CG; Sinclair BJ
    J Insect Physiol; 2009 Mar; 55(3):243-9. PubMed ID: 19111745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo and in vitro rapid cold-hardening protects cells from cold-shock injury in the flesh fly.
    Yi SX; Lee RE
    J Comp Physiol B; 2004 Nov; 174(8):611-5. PubMed ID: 15503055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells.
    Lee RE; Damodaran K; Yi SX; Lorigan GA
    Cryobiology; 2006 Jun; 52(3):459-63. PubMed ID: 16626678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster.
    Overgaard J; Sørensen JG; Petersen SO; Loeschcke V; Holmstrup M
    J Insect Physiol; 2005 Nov; 51(11):1173-82. PubMed ID: 16112133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upregulation of a desaturase is associated with the enhancement of cold hardiness in the onion maggot, Delia antiqua.
    Kayukawa T; Chen B; Hoshizaki S; Ishikawa Y
    Insect Biochem Mol Biol; 2007 Nov; 37(11):1160-7. PubMed ID: 17916502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts.
    Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL
    J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.