These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 16997319)
1. Oleic acid is elevated in cell membranes during rapid cold-hardening and pupal diapause in the flesh fly, Sarcophaga crassipalpis. Michaud MR; Denlinger DL J Insect Physiol; 2006 Oct; 52(10):1073-82. PubMed ID: 16997319 [TBL] [Abstract][Full Text] [Related]
2. p38 MAPK is a likely component of the signal transduction pathway triggering rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Fujiwara Y; Denlinger DL J Exp Biol; 2007 Sep; 210(Pt 18):3295-300. PubMed ID: 17766307 [TBL] [Abstract][Full Text] [Related]
3. Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): a metabolomic comparison. Michaud MR; Denlinger DL J Comp Physiol B; 2007 Oct; 177(7):753-63. PubMed ID: 17576567 [TBL] [Abstract][Full Text] [Related]
4. Rapid cold hardening elicits changes in brain protein profiles of the flesh fly, Sarcophaga crassipalpis. Li A; Denlinger DL Insect Mol Biol; 2008 Sep; 17(5):565-72. PubMed ID: 18828842 [TBL] [Abstract][Full Text] [Related]
5. Temporal expression patterns of diapause-associated genes in flesh fly pupae from the onset of diapause through post-diapause quiescence. Hayward SA; Pavlides SC; Tammariello SP; Rinehart JP; Denlinger DL J Insect Physiol; 2005 Jun; 51(6):631-40. PubMed ID: 15993127 [TBL] [Abstract][Full Text] [Related]
6. High temperature and hexane break pupal diapause in the flesh fly, Sarcophaga crassipalpis, by activating ERK/MAPK. Fujiwara Y; Denlinger DL J Insect Physiol; 2007 Dec; 53(12):1276-82. PubMed ID: 17681525 [TBL] [Abstract][Full Text] [Related]
7. Infradian cycles of oxygen consumption in diapausing pupae of the flesh fly, Sarcophaga crassipalpis, monitored by a scanning microrespirographic method. Sláma K; Denlinger DL Arch Insect Biochem Physiol; 1992; 20(2):135-43. PubMed ID: 1504318 [TBL] [Abstract][Full Text] [Related]
8. Rapid elevation of Inos and decreases in abundance of other proteins at pupal diapause termination in the flesh fly Sarcophaga crassipalpis. Li A; Michaud MR; Denlinger DL Biochim Biophys Acta; 2009 Apr; 1794(4):663-8. PubMed ID: 19118649 [TBL] [Abstract][Full Text] [Related]
9. A rapid cold-hardening process in insects. Lee RE; Chen CP; Denlinger DL Science; 1987 Dec; 238(4832):1415-7. PubMed ID: 17800568 [TBL] [Abstract][Full Text] [Related]
10. High temperature pulses decrease indirect chilling injury and elevate ATP levels in the flesh fly, Sarcophaga crassipalpis. Dollo VH; Yi SX; Lee RE Cryobiology; 2010 Jun; 60(3):351-3. PubMed ID: 20233586 [TBL] [Abstract][Full Text] [Related]
11. Neuropeptide-like precursor 4 is uniquely expressed during pupal diapause in the flesh fly. Li A; Rinehart JP; Denlinger DL Peptides; 2009 Mar; 30(3):518-21. PubMed ID: 19007830 [TBL] [Abstract][Full Text] [Related]
13. Low temperature acclimated populations of the grain aphid Sitobion avenae retain ability to rapidly cold harden with enhanced fitness. Powell SJ; Bale JS J Exp Biol; 2005 Jul; 208(Pt 13):2615-20. PubMed ID: 15961747 [TBL] [Abstract][Full Text] [Related]
14. Proteomics of the flesh fly brain reveals an abundance of upregulated heat shock proteins during pupal diapause. Li AQ; Popova-Butler A; Dean DH; Denlinger DL J Insect Physiol; 2007 Apr; 53(4):385-91. PubMed ID: 17349654 [TBL] [Abstract][Full Text] [Related]
15. Membrane remodeling and glucose in Drosophila melanogaster: a test of rapid cold-hardening and chilling tolerance hypotheses. MacMillan HA; Guglielmo CG; Sinclair BJ J Insect Physiol; 2009 Mar; 55(3):243-9. PubMed ID: 19111745 [TBL] [Abstract][Full Text] [Related]
16. In vivo and in vitro rapid cold-hardening protects cells from cold-shock injury in the flesh fly. Yi SX; Lee RE J Comp Physiol B; 2004 Nov; 174(8):611-5. PubMed ID: 15503055 [TBL] [Abstract][Full Text] [Related]
17. Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells. Lee RE; Damodaran K; Yi SX; Lorigan GA Cryobiology; 2006 Jun; 52(3):459-63. PubMed ID: 16626678 [TBL] [Abstract][Full Text] [Related]
18. Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster. Overgaard J; Sørensen JG; Petersen SO; Loeschcke V; Holmstrup M J Insect Physiol; 2005 Nov; 51(11):1173-82. PubMed ID: 16112133 [TBL] [Abstract][Full Text] [Related]
19. Upregulation of a desaturase is associated with the enhancement of cold hardiness in the onion maggot, Delia antiqua. Kayukawa T; Chen B; Hoshizaki S; Ishikawa Y Insect Biochem Mol Biol; 2007 Nov; 37(11):1160-7. PubMed ID: 17916502 [TBL] [Abstract][Full Text] [Related]
20. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts. Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]