These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 16997581)

  • 1. A penalty of using anonymous dominant markers (AFLPs, ISSRs, and RAPDs) for phylogenetic inference.
    Simmons MP; Zhang LB; Webb CT; Müller K
    Mol Phylogenet Evol; 2007 Feb; 42(2):528-42. PubMed ID: 16997581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the relationship between evolutionary divergence and phylogenetic accuracy in AFLP data sets.
    García-Pereira MJ; Caballero A; Quesada H
    Mol Biol Evol; 2010 May; 27(5):988-1000. PubMed ID: 20026482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Failed refutations: further comments on parsimony and likelihood methods and their relationship to Popper's degree of corroboration.
    de Queiroz K; Poe S
    Syst Biol; 2003 Jun; 52(3):352-67. PubMed ID: 12775524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How can third codon positions outperform first and second codon positions in phylogenetic inference? An empirical example from the seed plants.
    Simmons MP; Zhang LB; Webb CT; Reeves A
    Syst Biol; 2006 Apr; 55(2):245-58. PubMed ID: 16551581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bayesian model of AFLP marker evolution and phylogenetic inference.
    Luo R; Hipp AL; Larget B
    Stat Appl Genet Mol Biol; 2007; 6():Article11. PubMed ID: 17474877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consistency, characters, and the likelihood of correct phylogenetic inference.
    Givnish TJ; Sytsma KJ
    Mol Phylogenet Evol; 1997 Jun; 7(3):320-30. PubMed ID: 9187091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computer simulation analysis of the accuracy of partial genome sequencing and restriction fragment analysis in the reconstruction of phylogenetic relationships.
    Qiao B; Goldberg TL; Olsen GJ; Weigel RM
    Infect Genet Evol; 2006 Jul; 6(4):323-30. PubMed ID: 16406823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study in ancestral range reconstruction methods: retracing the uncertain histories of insular lineages.
    Clark JR; Ree RH; Alfaro ME; King MG; Wagner WL; Roalson EH
    Syst Biol; 2008 Oct; 57(5):693-707. PubMed ID: 18853357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relative contribution of band number to phylogenetic accuracy in AFLP data sets.
    García-Pereira MJ; Caballero A; Quesada H
    J Evol Biol; 2011 Nov; 24(11):2346-56. PubMed ID: 21848979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT-F, and rbcL in basal angiosperms.
    Müller KF; Borsch T; Hilu KW
    Mol Phylogenet Evol; 2006 Oct; 41(1):99-117. PubMed ID: 16904914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AFLPMax: a user-friendly application for computing the optimal number of amplified fragment length polymorphism markers needed in phylogenetic reconstruction.
    García-Pereira MJ; Quesada H; Caballero A; Carvajal-Rodríguez A
    Mol Ecol Resour; 2012 May; 12(3):566-9. PubMed ID: 22268698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multistate characters and diet shifts: evolution of Erotylidae (Coleoptera).
    Leschen RA; Buckley TR
    Syst Biol; 2007 Feb; 56(1):97-112. PubMed ID: 17366140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating gaps as phylogenetic characters across eight DNA regions: ramifications for North American Psoraleeae (Leguminosae).
    Egan AN; Crandall KA
    Mol Phylogenet Evol; 2008 Feb; 46(2):532-46. PubMed ID: 18039582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pitfalls of heterogeneous processes for phylogenetic reconstruction.
    Stefankovic D; Vigoda E
    Syst Biol; 2007 Feb; 56(1):113-24. PubMed ID: 17366141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic analysis and intraspecific variation: performance of parsimony, likelihood, and distance methods.
    Wiens JJ; Servedio MR
    Syst Biol; 1998 Jun; 47(2):228-53. PubMed ID: 12064228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative character-state space, amount of potential phylogenetic information, and heterogeneity of nucleotide and amino acid characters.
    Simmons MP; Carr TG; O'Neill K
    Mol Phylogenet Evol; 2004 Sep; 32(3):913-26. PubMed ID: 15288066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematics and morphological evolution within the moss family Bryaceae: a comparison between parsimony and Bayesian methods for reconstruction of ancestral character states.
    Pedersen N; Holyoak DT; Newton AE
    Mol Phylogenet Evol; 2007 Jun; 43(3):891-907. PubMed ID: 17161629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The size of the character state space affects the occurrence and detection of homoplasy: modelling the probability of incompatibility for unordered phylogenetic characters.
    Hoyal Cuthill J
    J Theor Biol; 2015 Feb; 366():24-32. PubMed ID: 25451518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The information content of a character under a Markov model of evolution.
    Shpak M; Churchill GA
    Mol Phylogenet Evol; 2000 Nov; 17(2):231-43. PubMed ID: 11083937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the efficacy of continuous quantitative characters for reconstructing the phylogeny of a morphologically homogeneous spider taxon (Araneae, Mygalomorphae, Antrodiaetidae, Antrodiaetus).
    Hendrixson BE; Bond JE
    Mol Phylogenet Evol; 2009 Oct; 53(1):300-13. PubMed ID: 19523525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.