These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16997879)

  • 1. In situ scanning probe microscopy studies of tetanus toxin-membrane interactions.
    Slade AL; Schoeniger JS; Sasaki DY; Yip CM
    Biophys J; 2006 Dec; 91(12):4565-74. PubMed ID: 16997879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous in situ total internal reflectance fluorescence/atomic force microscopy studies of DPPC/dPOPC microdomains in supported planar lipid bilayers.
    Shaw JE; Slade A; Yip CM
    J Am Chem Soc; 2003 Oct; 125(39):11838-9. PubMed ID: 14505404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gangliosides in phospholipid bilayer membranes: interaction with tetanus toxin.
    Winter A; Ulrich WP; Wetterich F; Weller U; Galla HJ
    Chem Phys Lipids; 1996 Jun; 81(1):21-34. PubMed ID: 9450318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid interaction of tetanus neurotoxin. A calorimetric and fluorescence spectroscopy study.
    Calappi E; Masserini M; Schiavo G; Montecucco C; Tettamanti G
    FEBS Lett; 1992 Sep; 309(2):107-10. PubMed ID: 1505672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micrometer-sized supported lipid bilayer arrays for bacterial toxin binding studies through total internal reflection fluorescence microscopy.
    Moran-Mirabal JM; Edel JB; Meyer GD; Throckmorton D; Singh AK; Craighead HG
    Biophys J; 2005 Jul; 89(1):296-305. PubMed ID: 15833994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of molecular interactions at membrane surfaces through colloid phase transitions.
    Baksh MM; Jaros M; Groves JT
    Nature; 2004 Jan; 427(6970):139-41. PubMed ID: 14712272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Channels formed in phospholipid bilayer membranes by diphtheria, tetanus, botulinum and anthrax toxin.
    Finkelstein A
    J Physiol (Paris); 1990; 84(2):188-90. PubMed ID: 1705290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the interaction forces between hydrophobic peptides and supported lipid bilayers using AFM.
    Andre G; Brasseur R; Dufrêne YF
    J Mol Recognit; 2007; 20(6):538-45. PubMed ID: 17891753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AFM study of interaction forces in supported planar DPPC bilayers in the presence of general anesthetic halothane.
    Leonenko Z; Finot E; Cramb D
    Biochim Biophys Acta; 2006 Apr; 1758(4):487-92. PubMed ID: 16626631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time atomic force microscopy reveals cytochrome c-induced alterations in neutral lipid bilayers.
    Morandat S; El Kirat K
    Langmuir; 2007 Oct; 23(22):10929-32. PubMed ID: 17887784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic force microscopy: a versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale.
    Picas L; Milhiet PE; Hernández-Borrell J
    Chem Phys Lipids; 2012 Dec; 165(8):845-60. PubMed ID: 23194897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic force microscopy of supported planar membrane bilayers.
    Singh S; Keller DJ
    Biophys J; 1991 Dec; 60(6):1401-10. PubMed ID: 1777565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The crystal structure of tetanus toxin Hc fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin.
    Fotinou C; Emsley P; Black I; Ando H; Ishida H; Kiso M; Sinha KA; Fairweather NF; Isaacs NW
    J Biol Chem; 2001 Aug; 276(34):32274-81. PubMed ID: 11418600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan-induced restructuration of a mica-supported phospholipid bilayer: an atomic force microscopy study.
    Fang N; Chan V
    Biomacromolecules; 2003; 4(6):1596-604. PubMed ID: 14606885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct submolecular scale imaging of mesoscale molecular order in supported dipalmitoylphosphatidylcholine bilayers.
    Sheikh KH; Giordani C; Kilpatrick JI; Jarvis SP
    Langmuir; 2011 Apr; 27(7):3749-53. PubMed ID: 21370902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An animal virus-derived peptide switches membrane morphology: possible relevance to nodaviral transfection processes.
    Janshoff A; Bong DT; Steinem C; Johnson JE; Ghadiri MR
    Biochemistry; 1999 Apr; 38(17):5328-36. PubMed ID: 10220319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the role of polysialoglycosphingolipids as tetanus toxin receptors. A study with lipid monolayers.
    Schiavo G; Demel R; Montecucco C
    Eur J Biochem; 1991 Aug; 199(3):705-11. PubMed ID: 1868854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid-drug interaction: biophysical effects of tolmetin on membrane mimetic systems of different dimensionality.
    Nunes C; Brezesinski G; Lopes D; Lima JL; Reis S; Lúcio M
    J Phys Chem B; 2011 Nov; 115(43):12615-23. PubMed ID: 21936545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AFM-based force-clamp monitors lipid bilayer failure kinetics.
    Redondo-Morata L; Giannotti MI; Sanz F
    Langmuir; 2012 Apr; 28(15):6403-10. PubMed ID: 22443887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.