These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Detection of molecular interactions at membrane surfaces through colloid phase transitions. Baksh MM; Jaros M; Groves JT Nature; 2004 Jan; 427(6970):139-41. PubMed ID: 14712272 [TBL] [Abstract][Full Text] [Related]
7. Channels formed in phospholipid bilayer membranes by diphtheria, tetanus, botulinum and anthrax toxin. Finkelstein A J Physiol (Paris); 1990; 84(2):188-90. PubMed ID: 1705290 [TBL] [Abstract][Full Text] [Related]
8. Probing the interaction forces between hydrophobic peptides and supported lipid bilayers using AFM. Andre G; Brasseur R; Dufrêne YF J Mol Recognit; 2007; 20(6):538-45. PubMed ID: 17891753 [TBL] [Abstract][Full Text] [Related]
9. AFM study of interaction forces in supported planar DPPC bilayers in the presence of general anesthetic halothane. Leonenko Z; Finot E; Cramb D Biochim Biophys Acta; 2006 Apr; 1758(4):487-92. PubMed ID: 16626631 [TBL] [Abstract][Full Text] [Related]
10. Real-time atomic force microscopy reveals cytochrome c-induced alterations in neutral lipid bilayers. Morandat S; El Kirat K Langmuir; 2007 Oct; 23(22):10929-32. PubMed ID: 17887784 [TBL] [Abstract][Full Text] [Related]
11. Atomic force microscopy: a versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale. Picas L; Milhiet PE; Hernández-Borrell J Chem Phys Lipids; 2012 Dec; 165(8):845-60. PubMed ID: 23194897 [TBL] [Abstract][Full Text] [Related]
12. Atomic force microscopy of supported planar membrane bilayers. Singh S; Keller DJ Biophys J; 1991 Dec; 60(6):1401-10. PubMed ID: 1777565 [TBL] [Abstract][Full Text] [Related]
13. The crystal structure of tetanus toxin Hc fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin. Fotinou C; Emsley P; Black I; Ando H; Ishida H; Kiso M; Sinha KA; Fairweather NF; Isaacs NW J Biol Chem; 2001 Aug; 276(34):32274-81. PubMed ID: 11418600 [TBL] [Abstract][Full Text] [Related]
14. Chitosan-induced restructuration of a mica-supported phospholipid bilayer: an atomic force microscopy study. Fang N; Chan V Biomacromolecules; 2003; 4(6):1596-604. PubMed ID: 14606885 [TBL] [Abstract][Full Text] [Related]
15. Direct submolecular scale imaging of mesoscale molecular order in supported dipalmitoylphosphatidylcholine bilayers. Sheikh KH; Giordani C; Kilpatrick JI; Jarvis SP Langmuir; 2011 Apr; 27(7):3749-53. PubMed ID: 21370902 [TBL] [Abstract][Full Text] [Related]
16. An animal virus-derived peptide switches membrane morphology: possible relevance to nodaviral transfection processes. Janshoff A; Bong DT; Steinem C; Johnson JE; Ghadiri MR Biochemistry; 1999 Apr; 38(17):5328-36. PubMed ID: 10220319 [TBL] [Abstract][Full Text] [Related]
17. On the role of polysialoglycosphingolipids as tetanus toxin receptors. A study with lipid monolayers. Schiavo G; Demel R; Montecucco C Eur J Biochem; 1991 Aug; 199(3):705-11. PubMed ID: 1868854 [TBL] [Abstract][Full Text] [Related]
18. Lipid-drug interaction: biophysical effects of tolmetin on membrane mimetic systems of different dimensionality. Nunes C; Brezesinski G; Lopes D; Lima JL; Reis S; Lúcio M J Phys Chem B; 2011 Nov; 115(43):12615-23. PubMed ID: 21936545 [TBL] [Abstract][Full Text] [Related]
20. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]