These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 16997899)
1. Metabolism of gamma-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. Mazzucotelli E; Tartari A; Cattivelli L; Forlani G J Exp Bot; 2006; 57(14):3755-66. PubMed ID: 16997899 [TBL] [Abstract][Full Text] [Related]
2. Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light. Janda T; Szalai G; Leskó K; Yordanova R; Apostol S; Popova LP Phytochemistry; 2007 Jun; 68(12):1674-82. PubMed ID: 17537468 [TBL] [Abstract][Full Text] [Related]
3. Solute accumulation in heat seedlings during cold acclimation: contribution to increased freezing tolerance. Kamata T; Uemura M Cryo Letters; 2004; 25(5):311-22. PubMed ID: 15618983 [TBL] [Abstract][Full Text] [Related]
4. Effect of abscisic acid and cold acclimation on the cytoskeletal and phosphorylated proteins in different cultivars of Triticum aestivum L. Olinevich OV; Khokhlova LP; Raudaskoski M Cell Biol Int; 2000; 24(6):365-73. PubMed ID: 10860572 [TBL] [Abstract][Full Text] [Related]
5. Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. Kobayashi F; Maeta E; Terashima A; Kawaura K; Ogihara Y; Takumi S J Exp Bot; 2008; 59(4):891-905. PubMed ID: 18326864 [TBL] [Abstract][Full Text] [Related]
6. Plant responses to cold: Transcriptome analysis of wheat. Winfield MO; Lu C; Wilson ID; Coghill JA; Edwards KJ Plant Biotechnol J; 2010 Sep; 8(7):749-71. PubMed ID: 20561247 [TBL] [Abstract][Full Text] [Related]
7. The effect of cold acclimation on the water relations and freezing tolerance of Hordeum vulgare L. Burchett S; Niven S; Fuller MP Cryo Letters; 2006; 27(5):295-303. PubMed ID: 17256061 [TBL] [Abstract][Full Text] [Related]
8. Utilization of barley or wheat bran to bioconvert glutamate to γ-aminobutyric acid (GABA). Jin WJ; Kim MJ; Kim KS J Food Sci; 2013 Sep; 78(9):C1376-82. PubMed ID: 24024689 [TBL] [Abstract][Full Text] [Related]
9. Sugars regulate cold-induced gene expression and freezing-tolerance in barley cell cultures. Tabaei-Aghdaei SR; Pearce RS; Harrison P J Exp Bot; 2003 Jun; 54(387):1565-75. PubMed ID: 12730262 [TBL] [Abstract][Full Text] [Related]
10. Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. Nagao M; Matsui K; Uemura M Plant Cell Environ; 2008 Jun; 31(6):872-85. PubMed ID: 18315534 [TBL] [Abstract][Full Text] [Related]
11. Comparative physiological and proteomic response to abrupt low temperature stress between two winter wheat cultivars differing in low temperature tolerance. Xu J; Li Y; Sun J; Du L; Zhang Y; Yu Q; Liu X Plant Biol (Stuttg); 2013 Mar; 15(2):292-303. PubMed ID: 22963252 [TBL] [Abstract][Full Text] [Related]
12. Proteolysis and bioconversion of cereal proteins to glutamate and γ-Aminobutyrate (GABA) in Rye malt sourdoughs. Stromeck A; Hu Y; Chen L; Gänzle MG J Agric Food Chem; 2011 Feb; 59(4):1392-9. PubMed ID: 21271723 [TBL] [Abstract][Full Text] [Related]
13. The role of abscisic acid and low temperature in chickpea (Cicer arietinum) cold tolerance. II. Effects on plasma membrane structure and function. Bakht J; Bano A; Dominy P J Exp Bot; 2006; 57(14):3707-15. PubMed ID: 16990370 [TBL] [Abstract][Full Text] [Related]
14. Effect of light on the gene expression and hormonal status of winter and spring wheat plants during cold hardening. Majláth I; Szalai G; Soós V; Sebestyén E; Balázs E; Vanková R; Dobrev PI; Tari I; Tandori J; Janda T Physiol Plant; 2012 Jun; 145(2):296-314. PubMed ID: 22257084 [TBL] [Abstract][Full Text] [Related]
15. Light-quality and temperature-dependent CBF14 gene expression modulates freezing tolerance in cereals. Novák A; Boldizsár Á; Ádám É; Kozma-Bognár L; Majláth I; Båga M; Tóth B; Chibbar R; Galiba G J Exp Bot; 2016 Mar; 67(5):1285-95. PubMed ID: 26712822 [TBL] [Abstract][Full Text] [Related]
16. Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings. Kobayashi F; Maeta E; Terashima A; Takumi S Physiol Plant; 2008 Sep; 134(1):74-86. PubMed ID: 18433415 [TBL] [Abstract][Full Text] [Related]
17. Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of the cor14b gene in frost-tolerant and frost-sensitive genotypes. Vágújfalvi A; Crosatti C; Galiba G; Dubcovsky J; Cattivelli L Mol Gen Genet; 2000 Mar; 263(2):194-200. PubMed ID: 10778737 [TBL] [Abstract][Full Text] [Related]
18. Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Kaplan F; Kopka J; Sung DY; Zhao W; Popp M; Porat R; Guy CL Plant J; 2007 Jun; 50(6):967-81. PubMed ID: 17461790 [TBL] [Abstract][Full Text] [Related]
19. The effects of cold acclimation on photosynthetic apparatus and the expression of COR14b in four genotypes of barley (Hordeum vulgare) contrasting in their tolerance to freezing and high-light treatment in cold conditions. Rapacz M; Wolanin B; Hura K; Tyrka M Ann Bot; 2008 Apr; 101(5):689-99. PubMed ID: 18245808 [TBL] [Abstract][Full Text] [Related]
20. Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. Soltész A; Smedley M; Vashegyi I; Galiba G; Harwood W; Vágújfalvi A J Exp Bot; 2013 Apr; 64(7):1849-62. PubMed ID: 23567863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]