These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16997952)

  • 1. Structural and functional conversion of molecular chaperone ClpB from the gram-positive halophilic lactic acid bacterium Tetragenococcus halophilus mediated by ATP and stress.
    Sugimoto S; Yoshida H; Mizunoe Y; Tsuruno K; Nakayama J; Sonomoto K
    J Bacteriol; 2006 Dec; 188(23):8070-8. PubMed ID: 16997952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo and in vitro complementation study comparing the function of DnaK chaperone systems from halophilic lactic acid bacterium Tetragenococcus halophilus and Escherichia coli.
    Sugimoto S; Saruwatari K; Higashi C; Tsuruno K; Matsumoto S; Nakayama J; Sonomoto K
    Biosci Biotechnol Biochem; 2008 Mar; 72(3):811-22. PubMed ID: 18323638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. M domains couple the ClpB threading motor with the DnaK chaperone activity.
    Haslberger T; Weibezahn J; Zahn R; Lee S; Tsai FT; Bukau B; Mogk A
    Mol Cell; 2007 Jan; 25(2):247-60. PubMed ID: 17244532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heptameric ring structure of the heat-shock protein ClpB, a protein-activated ATPase in Escherichia coli.
    Kim KI; Cheong GW; Park SC; Ha JS; Woo KM; Choi SJ; Chung CH
    J Mol Biol; 2000 Nov; 303(5):655-66. PubMed ID: 11061966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity.
    Mogk A; Schlieker C; Strub C; Rist W; Weibezahn J; Bukau B
    J Biol Chem; 2003 May; 278(20):17615-24. PubMed ID: 12624113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system.
    Doyle SM; Hoskins JR; Wickner S
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11138-44. PubMed ID: 17545305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement.
    Yamasaki T; Oohata Y; Nakamura T; Watanabe YH
    J Biol Chem; 2015 Apr; 290(15):9789-800. PubMed ID: 25713084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions within the ClpB/DnaK bi-chaperone system from Escherichia coli.
    Kedzierska S; Chesnokova LS; Witt SN; Zolkiewski M
    Arch Biochem Biophys; 2005 Dec; 444(1):61-5. PubMed ID: 16289019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualizing the ATPase cycle in a protein disaggregating machine: structural basis for substrate binding by ClpB.
    Lee S; Choi JM; Tsai FT
    Mol Cell; 2007 Jan; 25(2):261-71. PubMed ID: 17244533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide-dependent oligomerization of ClpB from Escherichia coli.
    Zolkiewski M; Kessel M; Ginsburg A; Maurizi MR
    Protein Sci; 1999 Sep; 8(9):1899-903. PubMed ID: 10493591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB.
    Mogk A; Tomoyasu T; Goloubinoff P; Rüdiger S; Röder D; Langen H; Bukau B
    EMBO J; 1999 Dec; 18(24):6934-49. PubMed ID: 10601016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide-induced switch in oligomerization of the AAA+ ATPase ClpB.
    Akoev V; Gogol EP; Barnett ME; Zolkiewski M
    Protein Sci; 2004 Mar; 13(3):567-74. PubMed ID: 14978298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide utilization requirements that render ClpB active as a chaperone.
    del Castillo U; Fernández-Higuero JA; Pérez-Acebrón S; Moro F; Muga A
    FEBS Lett; 2010 Mar; 584(5):929-34. PubMed ID: 20085762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperation between two ClpB isoforms enhances the recovery of the recombinant β-galactosidase from inclusion bodies.
    Guenther I; Zolkiewski M; Kędzierska-Mieszkowska S
    Biochem Biophys Res Commun; 2012 Oct; 426(4):596-600. PubMed ID: 22982305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide binding and allosteric modulation of the second AAA+ domain of ClpB probed by transient kinetic studies.
    Werbeck ND; Kellner JN; Barends TR; Reinstein J
    Biochemistry; 2009 Aug; 48(30):7240-50. PubMed ID: 19594134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a trap mutant of the AAA+ chaperone ClpB.
    Weibezahn J; Schlieker C; Bukau B; Mogk A
    J Biol Chem; 2003 Aug; 278(35):32608-17. PubMed ID: 12805357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-controlled activity of DnaK-DnaJ-GrpE chaperones: protein-folding arrest and recovery during and after heat shock depends on the substrate protein and the GrpE concentration.
    Diamant S; Goloubinoff P
    Biochemistry; 1998 Jul; 37(27):9688-94. PubMed ID: 9657681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability and interactions of the amino-terminal domain of ClpB from Escherichia coli.
    Tek V; Zolkiewski M
    Protein Sci; 2002 May; 11(5):1192-8. PubMed ID: 11967375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning, expression, purification and preliminary X-ray crystallographic studies of Escherichia coli Hsp100 nucleotide-binding domain 2 (NBD2).
    Li J; Sha B
    Acta Crystallogr D Biol Crystallogr; 2002 Jun; 58(Pt 6 Pt 2):1030-1. PubMed ID: 12037306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sedimentation Equilibrium Analysis of ClpB Self-Association in Diluted and Crowded Solutions.
    Alfonso C; del Castillo U; Martín I; Muga A; Rivas G
    Methods Enzymol; 2015; 562():135-60. PubMed ID: 26412650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.