These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16997952)

  • 21. The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATP-binding sites.
    Schlee S; Groemping Y; Herde P; Seidel R; Reinstein J
    J Mol Biol; 2001 Mar; 306(4):889-99. PubMed ID: 11243796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformational stability of the full-atom hexameric model of the ClpB chaperone from Escherichia coli.
    Zietkiewicz S; Slusarz MJ; Slusarz R; Liberek K; Rodziewicz-Motowidło S
    Biopolymers; 2010 Jan; 93(1):47-60. PubMed ID: 19714768
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coupling and dynamics of subunits in the hexameric AAA+ chaperone ClpB.
    Werbeck ND; Schlee S; Reinstein J
    J Mol Biol; 2008 Apr; 378(1):178-90. PubMed ID: 18343405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Examination of polypeptide substrate specificity for Escherichia coli ClpB.
    Li T; Lin J; Lucius AL
    Proteins; 2015 Jan; 83(1):117-34. PubMed ID: 25363713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Examination of ClpB Quaternary Structure and Linkage to Nucleotide Binding.
    Lin J; Lucius AL
    Biochemistry; 2016 Mar; 55(12):1758-71. PubMed ID: 26891079
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coupling of oligomerization and nucleotide binding in the AAA+ chaperone ClpB.
    Werbeck ND; Zeymer C; Kellner JN; Reinstein J
    Biochemistry; 2011 Feb; 50(5):899-909. PubMed ID: 21182296
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The structure of ClpB: a molecular chaperone that rescues proteins from an aggregated state.
    Lee S; Sowa ME; Watanabe YH; Sigler PB; Chiu W; Yoshida M; Tsai FT
    Cell; 2003 Oct; 115(2):229-40. PubMed ID: 14567920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and activity of ClpB from Escherichia coli. Role of the amino-and -carboxyl-terminal domains.
    Barnett ME; Zolkiewska A; Zolkiewski M
    J Biol Chem; 2000 Dec; 275(48):37565-71. PubMed ID: 10982797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The heat-sensitive Escherichia coli grpE280 phenotype: impaired interaction of GrpE(G122D) with DnaK.
    Grimshaw JP; Siegenthaler RK; Züger S; Schönfeld HJ; Z'graggen BR; Christen P
    J Mol Biol; 2005 Nov; 353(4):888-96. PubMed ID: 16198374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ClpB dynamics is driven by its ATPase cycle and regulated by the DnaK system and substrate proteins.
    Aguado A; Fernández-Higuero JA; Cabrera Y; Moro F; Muga A
    Biochem J; 2015 Mar; 466(3):561-70. PubMed ID: 25558912
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction of the N-terminal domain of Escherichia coli heat-shock protein ClpB and protein aggregates during chaperone activity.
    Tanaka N; Tani Y; Hattori H; Tada T; Kunugi S
    Protein Sci; 2004 Dec; 13(12):3214-21. PubMed ID: 15537752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The heat-shock protein ClpB of Francisella tularensis is involved in stress tolerance and is required for multiplication in target organs of infected mice.
    Meibom KL; Dubail I; Dupuis M; Barel M; Lenco J; Stulik J; Golovliov I; Sjöstedt A; Charbit A
    Mol Microbiol; 2008 Mar; 67(6):1384-401. PubMed ID: 18284578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of a thermophilic GrpE protein: insight into thermosensing function for the DnaK chaperone system.
    Nakamura A; Takumi K; Miki K
    J Mol Biol; 2010 Mar; 396(4):1000-11. PubMed ID: 20036249
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB.
    Weibezahn J; Tessarz P; Schlieker C; Zahn R; Maglica Z; Lee S; Zentgraf H; Weber-Ban EU; Dougan DA; Tsai FT; Mogk A; Bukau B
    Cell; 2004 Nov; 119(5):653-65. PubMed ID: 15550247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of the AAA+ chaperone clpB gene and stress-response expression in the halophilic methanogenic archaeon Methanohalophilus portucalensis.
    Shih CJ; Lai MC
    Microbiology (Reading); 2007 Aug; 153(Pt 8):2572-2583. PubMed ID: 17660421
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Importance of two ATP-binding sites for oligomerization, ATPase activity and chaperone function of mitochondrial Hsp78 protein.
    Krzewska J; Konopa G; Liberek K
    J Mol Biol; 2001 Dec; 314(4):901-10. PubMed ID: 11734006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Folding properties of the nucleotide exchange factor GrpE from Thermus thermophilus: GrpE is a thermosensor that mediates heat shock response.
    Groemping Y; Reinstein J
    J Mol Biol; 2001 Nov; 314(1):167-78. PubMed ID: 11724541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structure of E. coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1) and mechanistic studies on ClpB ATPase activity.
    Li J; Sha B
    J Mol Biol; 2002 May; 318(4):1127-37. PubMed ID: 12054807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of DinJ-YafQ toxin-antitoxin module in Tetragenococcus halophilus: activity, interplay, and evolution.
    Luo X; Lin J; Yan J; Kuang X; Su H; Lin W; Luo L
    Appl Microbiol Biotechnol; 2021 May; 105(9):3659-3672. PubMed ID: 33877415
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coupled kinetics of ATP and peptide hydrolysis by Escherichia coli FtsH protease.
    Bruckner RC; Gunyuzlu PL; Stein RL
    Biochemistry; 2003 Sep; 42(36):10843-52. PubMed ID: 12962509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.