These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16997953)

  • 1. CbgA, a protein involved in cortex formation and stress resistance in Myxococcus xanthus spores.
    Tengra FK; Dahl JL; Dutton D; Caberoy NB; Coyne L; Garza AG
    J Bacteriol; 2006 Dec; 188(23):8299-302. PubMed ID: 16997953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of major sporulation proteins of Myxococcus xanthus using a proteomic approach.
    Dahl JL; Tengra FK; Dutton D; Yan J; Andacht TM; Coyne L; Windell V; Garza AG
    J Bacteriol; 2007 Apr; 189(8):3187-97. PubMed ID: 17293425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small acid-soluble proteins with intrinsic disorder are required for UV resistance in Myxococcus xanthus spores.
    Dahl JL; Fordice D
    J Bacteriol; 2011 Jun; 193(12):3042-8. PubMed ID: 21515768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of beta-lactamase influences the course of development in Myxococcus xanthus.
    O'Connor KA; Zusman DR
    J Bacteriol; 1999 Oct; 181(20):6319-31. PubMed ID: 10515921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteins associated with the Myxococcus xanthus extracellular matrix.
    Curtis PD; Atwood J; Orlando R; Shimkets LJ
    J Bacteriol; 2007 Nov; 189(21):7634-42. PubMed ID: 17766415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predataxis behavior in Myxococcus xanthus.
    Berleman JE; Scott J; Chumley T; Kirby JR
    Proc Natl Acad Sci U S A; 2008 Nov; 105(44):17127-32. PubMed ID: 18952843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BrgE is a regulator of Myxococcus xanthus development.
    Pham VD; Shebelut CW; Zumstein EJ; Singer M
    Mol Microbiol; 2005 Aug; 57(3):762-73. PubMed ID: 16045620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of the cyclic nucleotide phosphodiesterases PdeA and PdeB to adaptation of Myxococcus xanthus cells to osmotic or high-temperature stress.
    Kimura Y; Nakatuma H; Sato N; Ohtani M
    J Bacteriol; 2006 Jan; 188(2):823-8. PubMed ID: 16385075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trehalose biosynthesis in Myxococcus xanthus under osmotic stress and during spore formation.
    Kimura Y; Kawasaki S; Tuchimoto R; Tanaka N
    J Biochem; 2014 Jan; 155(1):17-24. PubMed ID: 24098011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two Ser/Thr protein kinases essential for efficient aggregation and spore morphogenesis in Myxococcus xanthus.
    Stein EA; Cho K; Higgs PI; Zusman DR
    Mol Microbiol; 2006 Jun; 60(6):1414-31. PubMed ID: 16796678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression of the three multicopper oxidases from Myxococcus xanthus.
    Sánchez-Sutil MC; Gómez-Santos N; Moraleda-Muñoz A; Martins LO; Pérez J; Muñoz-Dorado J
    J Bacteriol; 2007 Jul; 189(13):4887-98. PubMed ID: 17483223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid body formation plays a central role in cell fate determination during developmental differentiation of Myxococcus xanthus.
    Hoiczyk E; Ring MW; McHugh CA; Schwär G; Bode E; Krug D; Altmeyer MO; Lu JZ; Bode HB
    Mol Microbiol; 2009 Oct; 74(2):497-517. PubMed ID: 19788540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Myxococcus xanthus bacterial tyrosine kinase, BtkA, is required for the formation of mature spores.
    Kimura Y; Yamashita S; Mori Y; Kitajima Y; Takegawa K
    J Bacteriol; 2011 Oct; 193(20):5853-7. PubMed ID: 21840977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A common step for changing cell shape in fruiting body and starvation-independent sporulation of Myxococcus xanthus.
    Licking E; Gorski L; Kaiser D
    J Bacteriol; 2000 Jun; 182(12):3553-8. PubMed ID: 10852889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that a chaperone-usher-like pathway of Myxococcus xanthus functions in spore coat formation.
    Leng X; Zhu W; Jin J; Mao X
    Microbiology (Reading); 2011 Jul; 157(Pt 7):1886-1896. PubMed ID: 21454366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AglU, a protein required for gliding motility and spore maturation of Myxococcus xanthus, is related to WD-repeat proteins.
    White DJ; Hartzell PL
    Mol Microbiol; 2000 May; 36(3):662-78. PubMed ID: 10844655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myxococcus xanthus twin-arginine translocation system is important for growth and development.
    Kimura Y; Saiga H; Hamanaka H; Matoba H
    Arch Microbiol; 2006 Feb; 184(6):387-96. PubMed ID: 16331440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SigB, SigC, and SigE from Myxococcus xanthus homologous to sigma32 are not required for heat shock response but for multicellular differentiation.
    Ueki T; Inouye S
    J Mol Microbiol Biotechnol; 2001 Apr; 3(2):287-93. PubMed ID: 11321585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel transcriptome patterns accompany evolutionary restoration of defective social development in the bacterium Myxococcus xanthus.
    Kadam SV; Wegener-Feldbrügge S; Søgaard-Andersen L; Velicer GJ
    Mol Biol Evol; 2008 Jul; 25(7):1274-81. PubMed ID: 18385222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SigF, a new sigma factor required for a motility system of Myxococcus xanthus.
    Ueki T; Xu CY; Inouye S
    J Bacteriol; 2005 Dec; 187(24):8537-41. PubMed ID: 16321963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.