BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16997955)

  • 1. Detection of protein-protein interactions in the alkanesulfonate monooxygenase system from Escherichia coli.
    Abdurachim K; Ellis HR
    J Bacteriol; 2006 Dec; 188(23):8153-9. PubMed ID: 16997955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered mechanism of the alkanesulfonate FMN reductase with the monooxygenase enzyme.
    Gao B; Ellis HR
    Biochem Biophys Res Commun; 2005 Jun; 331(4):1137-45. PubMed ID: 15882995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic importance of the substrate binding order for the FMNH2-dependent alkanesulfonate monooxygenase enzyme.
    Zhan X; Carpenter RA; Ellis HR
    Biochemistry; 2008 Feb; 47(7):2221-30. PubMed ID: 18198899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletional studies to investigate the functional role of a dynamic loop region of alkanesulfonate monooxygenase.
    Xiong J; Ellis HR
    Biochim Biophys Acta; 2012 Jul; 1824(7):898-906. PubMed ID: 22564769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Evaluation of the π-Helix in the NAD(P)H:FMN Reductase of the Alkanesulfonate Monooxygenase System.
    Musila JM; L Forbes D; Ellis HR
    Biochemistry; 2018 Jul; 57(30):4469-4477. PubMed ID: 29979040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional role of a conserved arginine residue located on a mobile loop of alkanesulfonate monooxygenase.
    Carpenter RA; Xiong J; Robbins JM; Ellis HR
    Biochemistry; 2011 Jul; 50(29):6469-77. PubMed ID: 21671586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of a Flavin-Free FMN Reductase to a Canonical Flavoprotein through Modification of the π-Helix.
    Musila JM; Ellis HR
    Biochemistry; 2016 Nov; 55(46):6389-6394. PubMed ID: 27806563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of flavin reduction in the alkanesulfonate monooxygenase system.
    Gao B; Ellis HR
    Biochim Biophys Acta; 2007 Mar; 1774(3):359-67. PubMed ID: 17289450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli.
    Eichhorn E; van der Ploeg JR; Leisinger T
    J Biol Chem; 1999 Sep; 274(38):26639-46. PubMed ID: 10480865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism for sulfur acquisition by the alkanesulfonate monooxygenase system.
    Ellis HR
    Bioorg Chem; 2011 Dec; 39(5-6):178-84. PubMed ID: 21880344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of Escherichia coli SsuE: defining a general catalytic cycle for FMN reductases of the flavodoxin-like superfamily.
    Driggers CM; Dayal PV; Ellis HR; Karplus PA
    Biochemistry; 2014 Jun; 53(21):3509-19. PubMed ID: 24816272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallization and preliminary X-ray crystallographic studies of the alkanesulfonate FMN reductase from Escherichia coli.
    Gao B; Bertrand A; Boles WH; Ellis HR; Mallett TC
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Sep; 61(Pt 9):837-40. PubMed ID: 16511173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exposing the Alkanesulfonate Monooxygenase Protein-Protein Interaction Sites.
    Dayal PV; Singh H; Busenlehner LS; Ellis HR
    Biochemistry; 2015 Dec; 54(51):7531-8. PubMed ID: 26634408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of Escherichia coli alkanesulfonate monooxygenase SsuD.
    Eichhorn E; Davey CA; Sargent DF; Leisinger T; Richmond TJ
    J Mol Biol; 2002 Nov; 324(3):457-68. PubMed ID: 12445781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The FMN-dependent two-component monooxygenase systems.
    Ellis HR
    Arch Biochem Biophys; 2010 May; 497(1-2):1-12. PubMed ID: 20193654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigations of two-component flavin-dependent monooxygenase systems.
    Robbins JM; Ellis HR
    Methods Enzymol; 2019; 620():399-422. PubMed ID: 31072495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic role of a conserved cysteine residue in the desulfonation reaction by the alkanesulfonate monooxygenase enzyme.
    Carpenter RA; Zhan X; Ellis HR
    Biochim Biophys Acta; 2010 Jan; 1804(1):97-105. PubMed ID: 19770075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Not as easy as π: An insertional residue does not explain the π-helix gain-of-function in two-component FMN reductases.
    McFarlane JS; Hagen RA; Chilton AS; Forbes DL; Lamb AL; Ellis HR
    Protein Sci; 2019 Jan; 28(1):123-134. PubMed ID: 30171650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deletion analysis of the Escherichia coli taurine and alkanesulfonate transport systems.
    Eichhorn E; van der Ploeg JR; Leisinger T
    J Bacteriol; 2000 May; 182(10):2687-95. PubMed ID: 10781534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.
    Nivière V; Vanoni MA; Zanetti G; Fontecave M
    Biochemistry; 1998 Aug; 37(34):11879-87. PubMed ID: 9718311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.