BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 16997955)

  • 21. Substrate-Dependent Mobile Loop Conformational Changes in Alkanesulfonate Monooxygenase from Accelerated Molecular Dynamics.
    Thakur A; Somai S; Yue K; Ippolito N; Pagan D; Xiong J; Ellis HR; Acevedo O
    Biochemistry; 2020 Sep; 59(38):3582-3593. PubMed ID: 32881481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Free flavins accelerate release of ferrous iron from iron storage proteins by both free flavin-dependent and -independent ferric reductases in Escherichia coli.
    Satoh J; Kimata S; Nakamoto S; Ishii T; Tanaka E; Yumoto S; Takeda K; Yoshimura E; Kanesaki Y; Ishige T; Tanaka K; Abe A; Kawasaki S; Niimura Y
    J Gen Appl Microbiol; 2020 Jan; 65(6):308-315. PubMed ID: 31281172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of critical steps governing the two-component alkanesulfonate monooxygenase catalytic mechanism.
    Robbins JM; Ellis HR
    Biochemistry; 2012 Aug; 51(32):6378-87. PubMed ID: 22775358
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elucidating the structural and conformational factors responsible for the activity and substrate specificity of alkanesulfonate monooxygenase.
    Ferrario V; Braiuca P; Tessaro P; Knapic L; Gruber C; Pleiss J; Ebert C; Eichhorn E; Gardossi L
    J Biomol Struct Dyn; 2012; 30(1):74-88. PubMed ID: 22571434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oligomeric Changes Regulate Flavin Transfer in Two-Component FMN Reductases Involved in Sulfur Metabolism.
    Aloh CH; Zeczycki TN; Ellis HR
    Biochemistry; 2023 Sep; 62(18):2751-2762. PubMed ID: 37651343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli.
    Miethke M; Hou J; Marahiel MA
    Biochemistry; 2011 Dec; 50(50):10951-64. PubMed ID: 22098718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity.
    Kim SH; Hisano T; Iwasaki W; Ebihara A; Miki K
    Proteins; 2008 Feb; 70(3):718-30. PubMed ID: 17729270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure of NAD(P)H:flavin oxidoreductase from Escherichia coli.
    Ingelman M; Ramaswamy S; Nivière V; Fontecave M; Eklund H
    Biochemistry; 1999 Jun; 38(22):7040-9. PubMed ID: 10353815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The flavoenzyme azobenzene reductase AzoR from Escherichia coli binds roseoflavin mononucleotide (RoFMN) with high affinity and is less active in its RoFMN form.
    Langer S; Nakanishi S; Mathes T; Knaus T; Binter A; Macheroux P; Mase T; Miyakawa T; Tanokura M; Mack M
    Biochemistry; 2013 Jun; 52(25):4288-95. PubMed ID: 23713585
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Shorter Alkanesulfonate Carbon Chains Destabilize the Active Site Architecture of SsuD for Desulfonation.
    Somai S; Yue K; Acevedo O; Ellis HR
    Biochemistry; 2023 Jan; 62(1):85-94. PubMed ID: 36534405
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics of a two-component p-hydroxyphenylacetate hydroxylase explain how reduced flavin is transferred from the reductase to the oxygenase.
    Sucharitakul J; Phongsak T; Entsch B; Svasti J; Chaiyen P; Ballou DP
    Biochemistry; 2007 Jul; 46(29):8611-23. PubMed ID: 17595116
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ferric reductases in Escherichia coli: the contribution of the haemoglobin-like protein.
    Eschenbrenner M; Coves J; Fontecave M
    Biochem Biophys Res Commun; 1994 Jan; 198(1):127-31. PubMed ID: 8292013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flavin specificity and subunit interaction of Vibrio fischeri general NAD(P)H-flavin oxidoreductase FRG/FRase I.
    Tang CK; Jeffers CE; Nichols JC; Tu SC
    Arch Biochem Biophys; 2001 Aug; 392(1):110-6. PubMed ID: 11469801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module.
    Gruez A; Pignol D; Zeghouf M; Covès J; Fontecave M; Ferrer JL; Fontecilla-Camps JC
    J Mol Biol; 2000 May; 299(1):199-212. PubMed ID: 10860732
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermostable flavin reductase that couples with dibenzothiophene monooxygenase, from thermophilic Bacillus sp. DSM411: purification, characterization, and gene cloning.
    Ohshiro T; Yamada H; Shimoda T; Matsubara T; Izumi Y
    Biosci Biotechnol Biochem; 2004 Aug; 68(8):1712-21. PubMed ID: 15322355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The reduced flavin-dependent monooxygenase SfnG converts dimethylsulfone to methanesulfinate.
    Wicht DK
    Arch Biochem Biophys; 2016 Aug; 604():159-66. PubMed ID: 27392454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Initial-rate kinetics of the flavin reductase reaction catalysed by human biliverdin-IXbeta reductase (BVR-B).
    Cunningham O; Gore MG; Mantle TJ
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):393-9. PubMed ID: 10620517
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional assembly of camphor converting two-component Baeyer-Villiger monooxygenases with a flavin reductase from E. coli.
    Kadow M; Balke K; Willetts A; Bornscheuer UT; Bäckvall JE
    Appl Microbiol Biotechnol; 2014 May; 98(9):3975-86. PubMed ID: 24190498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The flavoprotein component of the Escherichia coli sulfite reductase: expression, purification, and spectral and catalytic properties of a monomeric form containing both the flavin adenine dinucleotide and the flavin mononucleotide cofactors.
    Zeghouf M; Fontecave M; Macherel D; Covès J
    Biochemistry; 1998 Apr; 37(17):6114-23. PubMed ID: 9558350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.