These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16997963)

  • 1. Conservation and divergence in cellulosome architecture between two strains of Ruminococcus flavefaciens.
    Jindou S; Borovok I; Rincon MT; Flint HJ; Antonopoulos DA; Berg ME; White BA; Bayer EA; Lamed R
    J Bacteriol; 2006 Nov; 188(22):7971-6. PubMed ID: 16997963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulosome gene cluster analysis for gauging the diversity of the ruminal cellulolytic bacterium Ruminococcus flavefaciens.
    Jindou S; Brulc JM; Levy-Assaraf M; Rincon MT; Flint HJ; Berg ME; Wilson MK; White BA; Bayer EA; Lamed R; Borovok I
    FEMS Microbiol Lett; 2008 Aug; 285(2):188-94. PubMed ID: 18564339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of cellulosome components and type IV pili within the extracellular proteome of Ruminococcus flavefaciens 007.
    Vodovnik M; Duncan SH; Reid MD; Cantlay L; Turner K; Parkhill J; Lamed R; Yeoman CJ; Miller ME; White BA; Bayer EA; Marinšek-Logar R; Flint HJ
    PLoS One; 2013; 8(6):e65333. PubMed ID: 23750253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ruminococcal cellulosome systems from rumen to human.
    Ben David Y; Dassa B; Borovok I; Lamed R; Koropatkin NM; Martens EC; White BA; Bernalier-Donadille A; Duncan SH; Flint HJ; Bayer EA; Moraïs S
    Environ Microbiol; 2015 Sep; 17(9):3407-26. PubMed ID: 25845888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into a type III cohesin-dockerin recognition interface from the cellulose-degrading bacterium Ruminococcus flavefaciens.
    Weinstein JY; Slutzki M; Karpol A; Barak Y; Gul O; Lamed R; Bayer EA; Fried DB
    J Mol Recognit; 2015 Mar; 28(3):148-54. PubMed ID: 25639797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly of Ruminococcus flavefaciens cellulosome revealed by structures of two cohesin-dockerin complexes.
    Bule P; Alves VD; Israeli-Ruimy V; Carvalho AL; Ferreira LMA; Smith SP; Gilbert HJ; Najmudin S; Bayer EA; Fontes CMGA
    Sci Rep; 2017 Apr; 7(1):759. PubMed ID: 28389644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions.
    Israeli-Ruimy V; Bule P; Jindou S; Dassa B; Moraïs S; Borovok I; Barak Y; Slutzki M; Hamberg Y; Cardoso V; Alves VD; Najmudin S; White BA; Flint HJ; Gilbert HJ; Lamed R; Fontes CM; Bayer EA
    Sci Rep; 2017 Feb; 7():42355. PubMed ID: 28186207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complexity of the Ruminococcus flavefaciens cellulosome reflects an expansion in glycan recognition.
    Venditto I; Luis AS; Rydahl M; Schückel J; Fernandes VO; Vidal-Melgosa S; Bule P; Goyal A; Pires VM; Dourado CG; Ferreira LM; Coutinho PM; Henrissat B; Knox JP; Baslé A; Najmudin S; Gilbert HJ; Willats WG; Fontes CM
    Proc Natl Acad Sci U S A; 2016 Jun; 113(26):7136-41. PubMed ID: 27298375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher order scaffoldin assembly in Ruminococcus flavefaciens cellulosome is coordinated by a discrete cohesin-dockerin interaction.
    Bule P; Pires VMR; Alves VD; Carvalho AL; Prates JAM; Ferreira LMA; Smith SP; Gilbert HJ; Noach I; Bayer EA; Najmudin S; Fontes CMGA
    Sci Rep; 2018 May; 8(1):6987. PubMed ID: 29725056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to the cell surface.
    Rincon MT; Cepeljnik T; Martin JC; Lamed R; Barak Y; Bayer EA; Flint HJ
    J Bacteriol; 2005 Nov; 187(22):7569-78. PubMed ID: 16267281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single Binding Mode Integration of Hemicellulose-degrading Enzymes via Adaptor Scaffoldins in Ruminococcus flavefaciens Cellulosome.
    Bule P; Alves VD; Leitão A; Ferreira LM; Bayer EA; Smith SP; Gilbert HJ; Najmudin S; Fontes CM
    J Biol Chem; 2016 Dec; 291(52):26658-26669. PubMed ID: 27875311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallization and preliminary X-ray characterization of a type III cohesin-dockerin complex from the cellulosome system of Ruminococcus flavefaciens.
    Salama-Alber O; Gat Y; Lamed R; Shimon LJ; Bayer EA; Frolow F
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Sep; 68(Pt 9):1116-9. PubMed ID: 22949209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural characterization of a novel autonomous cohesin from Ruminococcus flavefaciens.
    Voronov-Goldman M; Levy-Assaraf M; Yaniv O; Wisserman G; Jindou S; Borovok I; Bayer EA; Lamed R; Shimon LJ; Frolow F
    Acta Crystallogr F Struct Biol Commun; 2014 Apr; 70(Pt 4):450-6. PubMed ID: 24699736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysozyme activity of the Ruminococcus champanellensis cellulosome.
    Moraïs S; Cockburn DW; Ben-David Y; Koropatkin NM; Martens EC; Duncan SH; Flint HJ; Mizrahi I; Bayer EA
    Environ Microbiol; 2016 Dec; 18(12):5112-5122. PubMed ID: 27555215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel cell surface-anchored cellulose-binding protein encoded by the sca gene cluster of Ruminococcus flavefaciens.
    Rincon MT; Cepeljnik T; Martin JC; Barak Y; Lamed R; Bayer EA; Flint HJ
    J Bacteriol; 2007 Jul; 189(13):4774-83. PubMed ID: 17468247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designer cellulosomes for enhanced hydrolysis of cellulosic substrates.
    Vazana Y; Moraïs S; Barak Y; Lamed R; Bayer EA
    Methods Enzymol; 2012; 510():429-52. PubMed ID: 22608740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome.
    Hirano K; Nihei S; Hasegawa H; Haruki M; Hirano N
    Appl Environ Microbiol; 2015 Jul; 81(14):4756-66. PubMed ID: 25956772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ScaC, an adaptor protein carrying a novel cohesin that expands the dockerin-binding repertoire of the Ruminococcus flavefaciens 17 cellulosome.
    Rincón MT; Martin JC; Aurilia V; McCrae SI; Rucklidge GJ; Reid MD; Bayer EA; Lamed R; Flint HJ
    J Bacteriol; 2004 May; 186(9):2576-85. PubMed ID: 15090497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional characterization of a novel type-III dockerin from Ruminococcus flavefaciens.
    Karpol A; Jobby MK; Slutzki M; Noach I; Chitayat S; Smith SP; Bayer EA
    FEBS Lett; 2013 Jan; 587(1):30-6. PubMed ID: 23195689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallization and preliminary crystallographic studies of a novel noncatalytic carbohydrate-binding module from the Ruminococcus flavefaciens cellulosome.
    Venditto I; Goyal A; Thompson A; Ferreira LM; Fontes CM; Najmudin S
    Acta Crystallogr F Struct Biol Commun; 2015 Jan; 71(Pt 1):45-8. PubMed ID: 25615967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.