These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 16998472)

  • 41. Identifying biologically relevant differences between metagenomic communities.
    Parks DH; Beiko RG
    Bioinformatics; 2010 Mar; 26(6):715-21. PubMed ID: 20130030
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of glucose on the performance of enhanced biological phosphorus removal activated sludge enriched with acetate.
    Gebremariam SY; Beutel MW; Christian D; Hess TF
    Bioresour Technol; 2012 Oct; 121():19-24. PubMed ID: 22858463
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The large PAO cells in full-scale EBPR biomass samples are not yeast spores but possibly novel members of the beta-Proteobacteria.
    Chua AS; Eales K; Mino T; Seviour R
    Water Sci Technol; 2004; 50(6):123-30. PubMed ID: 15536999
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Long-term performance evaluation of EBPR process in tropical climate: start-up, process stability, and the effect of operational pH and influent C:P ratio.
    Ong YH; Chua AS; Lee BP; Ngoh GC
    Water Sci Technol; 2013; 67(2):340-6. PubMed ID: 23168633
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exploring the Shift in Structure and Function of Microbial Communities Performing Biological Phosphorus Removal.
    Mao Y; Wang Z; Li L; Jiang X; Zhang X; Ren H; Zhang T
    PLoS One; 2016; 11(8):e0161506. PubMed ID: 27547976
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microbial distribution of Accumulibacter spp. and Competibacter spp. in aerobic granules from a lab-scale biological nutrient removal system.
    Lemaire R; Yuan Z; Blackall LL; Crocetti GR
    Environ Microbiol; 2008 Feb; 10(2):354-63. PubMed ID: 18028415
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Process hydraulics, distributed bacterial states, and biological phosphorus removal from wastewater.
    Schuler AJ
    Biotechnol Bioeng; 2006 Aug; 94(5):909-20. PubMed ID: 16548000
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 'Candidatus Accumulibacter' gene expression in response to dynamic EBPR conditions.
    He S; McMahon KD
    ISME J; 2011 Feb; 5(2):329-40. PubMed ID: 20703317
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metagenomic and metaproteomic analyses of Accumulibacter phosphatis-enriched floccular and granular biofilm.
    Barr JJ; Dutilh BE; Skennerton CT; Fukushima T; Hastie ML; Gorman JJ; Tyson GW; Bond PL
    Environ Microbiol; 2016 Jan; 18(1):273-87. PubMed ID: 26279094
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Which are the polyphosphate accumulating organisms in full-scale activated sludge enhanced biological phosphate removal systems in Australia?
    Beer M; Stratton HM; Griffiths PC; Seviour RJ
    J Appl Microbiol; 2006 Feb; 100(2):233-43. PubMed ID: 16430499
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Community structures and population dynamics of "Candidatus Accumulibacter" in activated sludges of wastewater treatment plants using ppk1 as phylogenetic marker.
    Zeng W; Zhang L; Fan P; Guo J; Peng Y
    J Environ Sci (China); 2018 May; 67():237-248. PubMed ID: 29778158
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Flow cytometric sorting and RFLP analysis of phosphate accumulating bacteria in an enhanced biological phosphorus removal system.
    Kawaharasaki M; Manome A; Kanagaw T; Nakamura K
    Water Sci Technol; 2002; 46(1-2):139-44. PubMed ID: 12216615
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Experimental assessment and modelling of the proton production linked to phosphorus release and uptake in EBPR systems.
    Marcelino M; Guisasola A; Baeza JA
    Water Res; 2009 May; 43(9):2431-40. PubMed ID: 19328517
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The microbiology of biological phosphorus removal in activated sludge systems.
    Seviour RJ; Mino T; Onuki M
    FEMS Microbiol Rev; 2003 Apr; 27(1):99-127. PubMed ID: 12697344
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Changes in phosphorus removing performance and bacterial community structure in an enhanced biological phosphorus removal reactor.
    Okunuki S; Kawaharasaki M; Tanaka H; Kanagawa T
    Water Res; 2004 May; 38(9):2432-8. PubMed ID: 15142805
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phylogeny and in situ identification of a novel gammaproteobacterium in activated sludge.
    Schroeder S; Petrovski S; Campbell B; McIlroy S; Seviour R
    FEMS Microbiol Lett; 2009 Aug; 297(2):157-63. PubMed ID: 19548893
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The contribution of 'omic'-based approaches to the study of enhanced biological phosphorus removal microbiology.
    Forbes CM; O'Leary ND; Dobson AD; Marchesi JR
    FEMS Microbiol Ecol; 2009 Jul; 69(1):1-15. PubMed ID: 19486153
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Free nitrous acid inhibition on anoxic phosphorus uptake and denitrification by poly-phosphate accumulating organisms.
    Zhou Y; Pijuan M; Yuan Z
    Biotechnol Bioeng; 2007 Nov; 98(4):903-12. PubMed ID: 17486651
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The microbiology of phosphorus removal in activated sludge processes-the current state of play.
    Seviour RJ; McIlroy S
    J Microbiol; 2008 Apr; 46(2):115-24. PubMed ID: 18545960
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of Raman microscopy for simultaneous and quantitative evaluation of multiple intracellular polymers dynamics functionally relevant to enhanced biological phosphorus removal processes.
    Majed N; Gu AZ
    Environ Sci Technol; 2010 Nov; 44(22):8601-8. PubMed ID: 20949949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.