BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 16998696)

  • 1. Present status and perspectives of bioartificial kidneys.
    Saito A; Aung T; Sekiguchi K; Sato Y; Vu DM; Inagaki M; Kanai G; Tanaka R; Suzuki H; Kakuta T
    J Artif Organs; 2006; 9(3):130-5. PubMed ID: 16998696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics.
    Humes HD; MacKay SM; Funke AJ; Buffington DA
    Kidney Int; 1999 Jun; 55(6):2502-14. PubMed ID: 10354300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research into the development of a wearable bioartificial kidney with a continuous hemofilter and a bioartificial tubule device using tubular epithelial cells.
    Saito A
    Artif Organs; 2004 Jan; 28(1):58-63. PubMed ID: 14720290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of bioartificial renal tubule devices with lifespan-extended human renal proximal tubular epithelial cells.
    Sanechika N; Sawada K; Usui Y; Hanai K; Kakuta T; Suzuki H; Kanai G; Fujimura S; Yokoyama TA; Fukagawa M; Terachi T; Saito A
    Nephrol Dial Transplant; 2011 Sep; 26(9):2761-9. PubMed ID: 21421594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of bioartificial kidneys.
    Saito A
    Nephrology (Carlton); 2003 Oct; 8 Suppl():S10-5. PubMed ID: 15012685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Present status and perspective of the development of a bioartificial kidney for chronic renal failure patients.
    Saito A; Aung T; Sekiguchi K; Sato Y
    Ther Apher Dial; 2006 Aug; 10(4):342-7. PubMed ID: 16911187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue engineering of a bioartificial renal tubule.
    MacKay SM; Funke AJ; Buffington DA; Humes HD
    ASAIO J; 1998; 44(3):179-83. PubMed ID: 9617948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The bioartificial kidney and bioengineered membranes in acute kidney injury.
    Ding F; Humes HD
    Nephron Exp Nephrol; 2008; 109(4):e118-22. PubMed ID: 18802374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The bioartificial kidney in the treatment of acute renal failure.
    Humes HD; Fissell WH; Weitzel WF
    Kidney Int Suppl; 2002 May; (80):121-5. PubMed ID: 11982826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcellular water transport and stability of expression in aquaporin 1-transfected LLC-PK1 cells in the development of a portable bioartificial renal tubule device.
    Fujita Y; Terashima M; Kakuta T; Itoh J; Tokimasa T; Brown D; Saito A
    Tissue Eng; 2004; 10(5-6):711-22. PubMed ID: 15265288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replacement of renal function in uremic animals with a tissue-engineered kidney.
    Humes HD; Buffington DA; MacKay SM; Funke AJ; Weitzel WF
    Nat Biotechnol; 1999 May; 17(5):451-5. PubMed ID: 10331803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of long-term transport ability of a bioartificial renal tubule device using LLC-PK1 cells.
    Ozgen N; Terashima M; Aung T; Sato Y; Isoe C; Kakuta T; Saito A
    Nephrol Dial Transplant; 2004 Sep; 19(9):2198-207. PubMed ID: 15266032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal cell therapy is associated with dynamic and individualized responses in patients with acute renal failure.
    Humes HD; Weitzel WF; Bartlett RH; Swaniker FC; Paganini EP
    Blood Purif; 2003; 21(1):64-71. PubMed ID: 12566664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of a bioengineered artificial kidney in renal failure.
    Fissell WH; Kimball J; MacKay SM; Funke A; Humes HD
    Ann N Y Acad Sci; 2001 Nov; 944():284-95. PubMed ID: 11797678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Present status and future perspectives on the development of bioartificial kidneys for the treatment of acute and chronic renal failure patients.
    Saito A; Sawada K; Fujimura S
    Hemodial Int; 2011 Apr; 15(2):183-92. PubMed ID: 21395969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of proliferation and functional differentiation of LLC-PK1 cells on porous polymer membranes for the development of a bioartificial renal tubule device.
    Sato Y; Terashima M; Kagiwada N; Tun T; Inagaki M; Kakuta T; Saito A
    Tissue Eng; 2005; 11(9-10):1506-15. PubMed ID: 16259605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure.
    Humes HD; Weitzel WF; Bartlett RH; Swaniker FC; Paganini EP; Luderer JR; Sobota J
    Kidney Int; 2004 Oct; 66(4):1578-88. PubMed ID: 15458454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioartificial organ support for hepatic, renal, and hematologic failure.
    Maguire PJ; Stevens C; Humes HD; Shander A; Halpern NA; Pastores SM
    Crit Care Clin; 2000 Oct; 16(4):681-94. PubMed ID: 11070811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal epithelial-cell-controlled solute transport across permeable membranes as the foundation for a bioartificial kidney.
    Ip TK; Aebischer P
    Artif Organs; 1989 Feb; 13(1):58-65. PubMed ID: 2653286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From portable dialysis to a bioengineered kidney.
    van Gelder MK; Mihaila SM; Jansen J; Wester M; Verhaar MC; Joles JA; Stamatialis D; Masereeuw R; Gerritsen KGF
    Expert Rev Med Devices; 2018 May; 15(5):323-336. PubMed ID: 29633900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.