These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 16998828)
1. Of bears, frogs, meat, mice and men: complexity of factors affecting skeletal muscle mass and fat. Shavlakadze T; Grounds M Bioessays; 2006 Oct; 28(10):994-1009. PubMed ID: 16998828 [TBL] [Abstract][Full Text] [Related]
2. Application of cellular mechanisms to growth and development of food producing animals. Chung KY; Johnson BJ J Anim Sci; 2008 Apr; 86(14 Suppl):E226-35. PubMed ID: 17965330 [TBL] [Abstract][Full Text] [Related]
3. The influence of thiazolidinediones on adipogenesis in vitro and in vivo: potential modifiers of intramuscular adipose tissue deposition in meat animals. Hausman GJ; Poulos SP; Pringle TD; Azain MJ J Anim Sci; 2008 Apr; 86(14 Suppl):E236-43. PubMed ID: 17686902 [TBL] [Abstract][Full Text] [Related]
4. Skeletal muscles of hibernating brown bears are unusually resistant to effects of denervation. Lin DC; Hershey JD; Mattoon JS; Robbins CT J Exp Biol; 2012 Jun; 215(Pt 12):2081-7. PubMed ID: 22623196 [TBL] [Abstract][Full Text] [Related]
5. Role of IGF-I in skeletal muscle mass maintenance. Clemmons DR Trends Endocrinol Metab; 2009 Sep; 20(7):349-56. PubMed ID: 19729319 [TBL] [Abstract][Full Text] [Related]
6. Antiproteolytic effects of plasma from hibernating bears: a new approach for muscle wasting therapy? Fuster G; Busquets S; Almendro V; López-Soriano FJ; Argilés JM Clin Nutr; 2007 Oct; 26(5):658-61. PubMed ID: 17904252 [TBL] [Abstract][Full Text] [Related]
7. Technologies for the control of fat and lean deposition in livestock. Sillence MN Vet J; 2004 May; 167(3):242-57. PubMed ID: 15080873 [TBL] [Abstract][Full Text] [Related]
8. Myoblast models of skeletal muscle hypertrophy and atrophy. Sharples AP; Stewart CE Curr Opin Clin Nutr Metab Care; 2011 May; 14(3):230-6. PubMed ID: 21460719 [TBL] [Abstract][Full Text] [Related]
9. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Musarò A; McCullagh K; Paul A; Houghton L; Dobrowolny G; Molinaro M; Barton ER; Sweeney HL; Rosenthal N Nat Genet; 2001 Feb; 27(2):195-200. PubMed ID: 11175789 [TBL] [Abstract][Full Text] [Related]
11. Skeletal muscles of hibernating black bears show minimal atrophy and phenotype shifting despite prolonged physical inactivity and starvation. Miyazaki M; Shimozuru M; Tsubota T PLoS One; 2019; 14(4):e0215489. PubMed ID: 30998788 [TBL] [Abstract][Full Text] [Related]
13. Atrophy and hypertrophy of skeletal muscles: structural and functional aspects. Boonyarom O; Inui K Acta Physiol (Oxf); 2006 Oct; 188(2):77-89. PubMed ID: 16948795 [TBL] [Abstract][Full Text] [Related]
14. Cellular signaling pathways regulating the initial stage of adipogenesis and marbling of skeletal muscle. Du M; Yin J; Zhu MJ Meat Sci; 2010 Sep; 86(1):103-9. PubMed ID: 20510530 [TBL] [Abstract][Full Text] [Related]
15. Skeletal muscle degeneration and regeneration in mice and flies. Rai M; Nongthomba U; Grounds MD Curr Top Dev Biol; 2014; 108():247-81. PubMed ID: 24512712 [TBL] [Abstract][Full Text] [Related]
16. Novel role for ß-adrenergic signalling in skeletal muscle growth, development and regeneration. Ryall JG; Church JE; Lynch GS Clin Exp Pharmacol Physiol; 2010 Mar; 37(3):397-401. PubMed ID: 19793099 [TBL] [Abstract][Full Text] [Related]
17. Loss of skeletal muscle mass in aging: examining the relationship of starvation, sarcopenia and cachexia. Thomas DR Clin Nutr; 2007 Aug; 26(4):389-99. PubMed ID: 17499396 [TBL] [Abstract][Full Text] [Related]
18. Implications of cross-talk between tumour necrosis factor and insulin-like growth factor-1 signalling in skeletal muscle. Grounds MD; Radley HG; Gebski BL; Bogoyevitch MA; Shavlakadze T Clin Exp Pharmacol Physiol; 2008 Jul; 35(7):846-51. PubMed ID: 18215180 [TBL] [Abstract][Full Text] [Related]