These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 16999142)

  • 1. Fuel oxidation efficiencies and exhaust composition in solid oxide fuel cells.
    Pomfret MB; Demircan O; Sukeshini AM; Walker RA
    Environ Sci Technol; 2006 Sep; 40(17):5574-9. PubMed ID: 16999142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ studies of fuel oxidation in solid oxide fuel cells.
    Pomfret MB; Owrutsky JC; Walker RA
    Anal Chem; 2007 Mar; 79(6):2367-72. PubMed ID: 17295449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A redox-stable efficient anode for solid-oxide fuel cells.
    Tao S; Irvine JT
    Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-performance Ni-CeO
    Sasaki K; Takahashi I; Kuramoto K; Shin-Mura K
    R Soc Open Sci; 2022 Jul; 9(7):220227. PubMed ID: 35875470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a Methane Oxidation Intermediate on Solid Oxide Fuel Cell Anode Surfaces with Fourier Transform Infrared Emission.
    Pomfret MB; Steinhurst DA; Owrutsky JC
    J Phys Chem Lett; 2013 Apr; 4(8):1310-4. PubMed ID: 26282145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ optical studies of methane and simulated biogas oxidation on high temperature solid oxide fuel cell anodes.
    Kirtley JD; Steinhurst DA; Owrutsky JC; Pomfret MB; Walker RA
    Phys Chem Chem Phys; 2014 Jan; 16(1):227-36. PubMed ID: 24247646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-temperature "spectrochronopotentiometry": correlating electrochemical performance with in situ Raman spectroscopy in solid oxide fuel cells.
    Kirtley JD; Halat DM; McIntyre MD; Eigenbrodt BC; Walker RA
    Anal Chem; 2012 Nov; 84(22):9745-53. PubMed ID: 23046116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Direct Hydrocarbon Solid Oxide Fuel Cells with Exsolved Anode Nanocatalysts.
    Wang T; Wang R; Xie X; Chang S; Wei T; Dong D; Wang Z
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):56735-56742. PubMed ID: 36515640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical enhancement of nitric oxide removal from simulated lean-burn engine exhaust via solid oxide fuel cells.
    Huang TJ; Wu CY; Lin YH
    Environ Sci Technol; 2011 Jul; 45(13):5683-8. PubMed ID: 21667969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous NOx and hydrocarbon emissions control for lean-burn engines using low-temperature solid oxide fuel cell at open circuit.
    Huang TJ; Hsu SH; Wu CY
    Environ Sci Technol; 2012 Feb; 46(4):2324-9. PubMed ID: 22289082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing and mapping electrode surfaces in solid oxide fuel cells.
    Blinn KS; Li X; Liu M; Bottomley LA; Liu M
    J Vis Exp; 2012 Sep; (67):e50161. PubMed ID: 23023264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CO2 emission free co-generation of energy and ethylene in hydrocarbon SOFC reactors with a dehydrogenation anode.
    Fu XZ; Lin JY; Xu S; Luo JL; Chuang KT; Sanger AR; Krzywicki A
    Phys Chem Chem Phys; 2011 Nov; 13(43):19615-23. PubMed ID: 21984357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells.
    Wang W; Su C; Ran R; Zhao B; Shao Z; Tade MO; Liu S
    ChemSusChem; 2014 Jun; 7(6):1719-28. PubMed ID: 24798121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational Design of Superior, Coking-Resistant, Nickel-Based Anodes through Tailoring Interfacial Reactions for Solid Oxide Fuel Cells Operated on Methane Fuel.
    Qu J; Wang W; Chen Y; Li H; Zhong Y; Yang G; Zhou W; Shao Z
    ChemSusChem; 2018 Sep; 11(18):3112-3119. PubMed ID: 30039570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Direct
    Wang D; Wong SI; Sunarso J; Xu M; Wang W; Ran R; Zhou W; Shao Z
    ACS Appl Mater Interfaces; 2021 May; 13(17):20105-20113. PubMed ID: 33886260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogas from the organic fraction of municipal solid waste: dealing with contaminants for a solid oxide fuel cell energy generator.
    Papurello D; Lanzini A; Leone P; Santarelli M; Silvestri S
    Waste Manag; 2014 Nov; 34(11):2047-56. PubMed ID: 25081854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications.
    Tippawan P; Arpornwichanop A
    Bioresour Technol; 2014 Apr; 157():231-9. PubMed ID: 24561628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Doped CeO2-LaFeO3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells.
    Shin TH; Ida S; Ishihara T
    J Am Chem Soc; 2011 Dec; 133(48):19399-407. PubMed ID: 22011010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical performance and carbon deposition resistance of M-BaZr₀.₁Ce₀.₇Y₀.₁Yb₀.₁O₃₋δ (M = Pd, Cu, Ni or NiCu) anodes for solid oxide fuel cells.
    Li M; Hua B; Pu J; Chi B; Jian L
    Sci Rep; 2015 Jan; 5():7667. PubMed ID: 25563843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.