These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 16999395)
21. A planar carboxylate-rich tetraironII complex and its conversion to linear triironII and paddlewheel diironII complexes. Reisner E; Telser J; Lippard SJ Inorg Chem; 2007 Dec; 46(25):10754-70. PubMed ID: 17997551 [TBL] [Abstract][Full Text] [Related]
22. Iron(II) and zinc(II) monohelical binaphthyl salen complexes. Wiznycia AV; Desper J; Levy CJ Chem Commun (Camb); 2005 Oct; (37):4693-5. PubMed ID: 16175295 [TBL] [Abstract][Full Text] [Related]
23. Visualising the carboxylate shift at a bioinspired diiron(II) site in the solid state. Burger B; Dechert S; Grosse C; Demeshko S; Meyer F Chem Commun (Camb); 2011 Oct; 47(37):10428-30. PubMed ID: 21842055 [TBL] [Abstract][Full Text] [Related]
24. Ambidentate pyridyl-carboxylate ligands in the coordination-driven self-assembly of 2D Pt macrocycles: self-selection for a single isomer. Chi KW; Addicott C; Arif AM; Stang PJ J Am Chem Soc; 2004 Dec; 126(50):16569-74. PubMed ID: 15600362 [TBL] [Abstract][Full Text] [Related]
25. Effect of the carboxylate shift on the reactivity of zinc complexes in the gas phase. Duchácková L; Schröder D; Roithová J Inorg Chem; 2011 Apr; 50(7):3153-8. PubMed ID: 21381680 [TBL] [Abstract][Full Text] [Related]
26. Solvent induced reactivity of 3,5-dimethylpyrazole towards zinc (II) carboxylates. Sarma R; Kalita D; Baruah JB Dalton Trans; 2009 Sep; (36):7428-36. PubMed ID: 19727464 [TBL] [Abstract][Full Text] [Related]
27. Effect of a tridentate ligand on the structure, electronic structure, and reactivity of the copper(I) nitrite complex: role of the conserved three-histidine ligand environment of the type-2 copper site in copper-containing nitrite reductases. Kujime M; Izumi C; Tomura M; Hada M; Fujii H J Am Chem Soc; 2008 May; 130(19):6088-98. PubMed ID: 18412340 [TBL] [Abstract][Full Text] [Related]
28. Coordination studies of bis-strapped-hanging-carboxylate porphyrins. X-ray characterization of a five-coordinate iron(II) complex with a built-in axial base. Hijazi I; Roisnel T; Fourmigué M; Weiss J; Boitrel B Inorg Chem; 2010 Apr; 49(7):3098-100. PubMed ID: 20210347 [TBL] [Abstract][Full Text] [Related]
29. Design and synthesis of a tetradentate '3-amine-1-carboxylate' ligand to mimic the metal binding environment at the non-heme iron(II) oxidase active site. Dungan VJ; Ortin Y; Mueller-Bunz H; Rutledge PJ Org Biomol Chem; 2010 Apr; 8(7):1666-73. PubMed ID: 20237680 [TBL] [Abstract][Full Text] [Related]
30. Characterization of metal ligand mutants of phenylalanine hydroxylase: Insights into the plasticity of a 2-histidine-1-carboxylate triad. Li J; Fitzpatrick PF Arch Biochem Biophys; 2008 Jul; 475(2):164-8. PubMed ID: 18477464 [TBL] [Abstract][Full Text] [Related]
31. Zinc(II) binding ability of tri-, tetra- and penta-peptides containing two or three histidyl residues. Kállay C; Osz K; Dávid A; Valastyán Z; Malandrinos G; Hadjiliadis N; Sóvágó I Dalton Trans; 2007 Sep; (36):4040-7. PubMed ID: 17828365 [TBL] [Abstract][Full Text] [Related]
32. Iron Coordination Chemistry of Phenylpyruvate: An Unexpected kappa3-bridging mode that leads to oxidative cleavage of the C2-C3 bond. Paine TK; Zheng H; Que L Inorg Chem; 2005 Feb; 44(3):474-6. PubMed ID: 15679371 [TBL] [Abstract][Full Text] [Related]
33. Combined Mössbauer spectral and density functional theory determination of the magnetic easy-axis in two high-spin iron(II) 2-pyrazinecarboxylate complexes. Long GJ; Tanase S; Remacle F; Periyasamy G; Grandjean F Inorg Chem; 2009 Sep; 48(17):8173-9. PubMed ID: 19630378 [TBL] [Abstract][Full Text] [Related]
34. Correlation of infrared spectra of zinc(II) carboxylates with their structures. Zelenák V; Vargová Z; Györyová K Spectrochim Acta A Mol Biomol Spectrosc; 2007 Feb; 66(2):262-72. PubMed ID: 16829167 [TBL] [Abstract][Full Text] [Related]
35. One metal-two pathways to the carboxylate-enhanced, iron-containing quercetinase mimics. Baráth G; Kaizer J; Speier G; Párkányi L; Kuzmann E; Vértes A Chem Commun (Camb); 2009 Jun; (24):3630-2. PubMed ID: 19521631 [TBL] [Abstract][Full Text] [Related]
36. Synthesis, structure, spectra and reactivity of iron(III) complexes of facially coordinating and sterically hindering 3N ligands as models for catechol dioxygenases. Sundaravel K; Dhanalakshmi T; Suresh E; Palaniandavar M Dalton Trans; 2008 Dec; (48):7012-25. PubMed ID: 19050788 [TBL] [Abstract][Full Text] [Related]
37. Biomimetic hydrolysis of penicillin G catalyzed by dinuclear zinc(II) complexes: structure-activity correlations in beta-lactamase model systems. Bauer-Siebenlist B; Dechert S; Meyer F Chemistry; 2005 Sep; 11(18):5343-52. PubMed ID: 16003817 [TBL] [Abstract][Full Text] [Related]
38. Structural and functional comparison of 2-His-1-carboxylate and 3-His metallocentres in non-haem iron(II)-dependent enzymes. Leitgeb S; Nidetzky B Biochem Soc Trans; 2008 Dec; 36(Pt 6):1180-6. PubMed ID: 19021520 [TBL] [Abstract][Full Text] [Related]
39. Novel iron(III) complexes of sterically hindered 4N ligands: regioselectivity in biomimetic extradiol cleavage of catechols. Mayilmurugan R; Stoeckli-Evans H; Palaniandavar M Inorg Chem; 2008 Aug; 47(15):6645-58. PubMed ID: 18597419 [TBL] [Abstract][Full Text] [Related]
40. First Zn(II) bowl-complexes modeling the tris(histidine) metallo-site of enzymes. Visnjevac A; Gout J; Ingert N; Bistri O; Reinaud O Org Lett; 2010 May; 12(9):2044-7. PubMed ID: 20356067 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]