These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16999501)

  • 1. Water as a lubricant for graphite: a computer simulation study.
    Pertsin A; Grunze M
    J Chem Phys; 2006 Sep; 125(11):114707. PubMed ID: 16999501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does water condense in carbon pores?
    Liu JC; Monson PA
    Langmuir; 2005 Oct; 21(22):10219-25. PubMed ID: 16229548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computer simulation study of stick-slip transitions in water films confined between model hydrophilic surfaces. 1. Monolayer films.
    Pertsin A; Grunze M
    Langmuir; 2008 Jan; 24(1):135-41. PubMed ID: 18047380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Storage of hydrogen at 303 K in graphite slitlike pores from grand canonical Monte Carlo simulation.
    Kowalczyk P; Tanaka H; Hołyst R; Kaneko K; Ohmori T; Miyamoto J
    J Phys Chem B; 2005 Sep; 109(36):17174-83. PubMed ID: 16853191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of water in finite length carbon slit pore: comparison between computer simulation and experiment.
    Wongkoblap A; Do DD
    J Phys Chem B; 2007 Dec; 111(50):13949-56. PubMed ID: 18044864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grand canonical Monte Carlo simulation of the adsorption isotherms of water molecules on model soot particles.
    Moulin F; Picaud S; Hoang PN; Jedlovszky P
    J Chem Phys; 2007 Oct; 127(16):164719. PubMed ID: 17979383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grand canonical monte carlo simulation study of water adsorption in silicalite at 300 K.
    Puibasset J; Pellenq RJ
    J Phys Chem B; 2008 May; 112(20):6390-7. PubMed ID: 18433164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulation of confined fluids in isosurface-isothermal-isobaric ensemble.
    Eslami H; Mozaffari F; Moghadasi J; Müller-Plathe F
    J Chem Phys; 2008 Nov; 129(19):194702. PubMed ID: 19026076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of 1-site and 5-site models of methane on its adsorption on graphite and in graphitic slit pores.
    Do DD; Do HD
    J Phys Chem B; 2005 Oct; 109(41):19288-95. PubMed ID: 16853491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water clusters on graphite: methodology for quantum chemical a priori prediction of reaction rate constants.
    Xu S; Irle S; Musaev DG; Lin MC
    J Phys Chem A; 2005 Oct; 109(42):9563-72. PubMed ID: 16866408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation study of structural, transport, and thermodynamic properties of TIP4P/2005 water in single-walled carbon nanotubes.
    Guse C; Hentschke R
    J Phys Chem B; 2012 Jan; 116(2):751-62. PubMed ID: 22171918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of short-range repulsion between hydrated phospholipid bilayers: a computer simulation study.
    Pertsin A; Platonov D; Grunze M
    Langmuir; 2007 Jan; 23(3):1388-93. PubMed ID: 17241063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative simulation study of nitrogen and ammonia adsorption on graphitized and nongraphitized carbon blacks.
    Herrera LF; Do DD; Birkett GR
    J Colloid Interface Sci; 2008 Apr; 320(2):415-22. PubMed ID: 18258251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasistatic computer simulations of shear behavior of water nanoconfined between mica surfaces.
    Fedyanin I; Pertsin A; Grunze M
    J Chem Phys; 2011 Nov; 135(17):174704. PubMed ID: 22070314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase behavior of model confined fluids. Influence of substrate-fluid interaction strength.
    Rosch TW; Errington JR
    J Phys Chem B; 2008 Nov; 112(47):14911-9. PubMed ID: 18973362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasi one-dimensional nanopores in single-wall carbon nanohorn colloids using grand canonical Monte Carlo simulation aided adsorption technique.
    Ohba T; Kanoh H; Yudasaka M; Iijima S; Kaneko K
    J Phys Chem B; 2005 May; 109(18):8659-62. PubMed ID: 16852025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grand canonical Monte Carlo simulation study of capillary condensation between nanoparticles.
    Kim S; Ehrman SH
    J Chem Phys; 2007 Oct; 127(13):134702. PubMed ID: 17919038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explanation of the unusual peak of calorimetric heat in the adsorption of nitrogen, argon and methane on graphitized thermal carbon black.
    Wongkoblap A; Do DD; Nicholson D
    Phys Chem Chem Phys; 2008 Feb; 10(8):1106-13. PubMed ID: 18270611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and mobility of nanoconfined polyamide-6,6 oligomers: application of a molecular dynamics technique with constant temperature, surface area, and parallel pressure.
    Eslami H; Müller-Plathe F
    J Phys Chem B; 2009 Apr; 113(16):5568-81. PubMed ID: 19334699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boltzmann bias grand canonical Monte Carlo.
    Garberoglio G
    J Chem Phys; 2008 Apr; 128(13):134109. PubMed ID: 18397055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.