BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16999607)

  • 1. Progressive increase of lithotripter output produces better in-vivo stone comminution.
    Maloney ME; Marguet CG; Zhou Y; Kang DE; Sung JC; Springhart WP; Madden J; Zhong P; Preminger GM
    J Endourol; 2006 Sep; 20(9):603-6. PubMed ID: 16999607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy.
    Zhou Y; Cocks FH; Preminger GM; Zhong P
    J Urol; 2004 Jul; 172(1):349-54. PubMed ID: 15201809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of treatment strategy used during shockwave lithotripsy to maximize stone fragmentation efficiency.
    Yong DZ; Lipkin ME; Simmons WN; Sankin G; Albala DM; Zhong P; Preminger GM
    J Endourol; 2011 Sep; 25(9):1507-11. PubMed ID: 21834658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of output voltage distribution on stone comminution efficiency during shockwave lithotripsy in renal or ureteropelvic junction stones: a preliminary study.
    You D; Park J; Hong B; Park HK
    Scand J Urol Nephrol; 2010 Sep; 44(4):236-41. PubMed ID: 20446817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of stress waves and cavitation in stone comminution in shock wave lithotripsy.
    Zhu S; Cocks FH; Preminger GM; Zhong P
    Ultrasound Med Biol; 2002 May; 28(5):661-71. PubMed ID: 12079703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Broad vs Narrow Focal Width Lithotripter Fields.
    Xing Y; Chen TT; Simmons WN; Sankin G; Cocks FH; Lipkin ME; Preminger GM; Zhong P
    J Endourol; 2017 May; 31(5):502-509. PubMed ID: 28340536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Impact of Dust and Confinement on Fragmentation of Kidney Stones by Shockwave Lithotripsy in Tissue Phantoms.
    Randad A; Ahn J; Bailey MR; Kreider W; Harper JD; Sorensen MD; Maxwell AD
    J Endourol; 2019 May; 33(5):400-406. PubMed ID: 30595048
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of Stone Size on the Comminution Process and Efficiency in Shock Wave Lithotripsy.
    Zhang Y; Nault I; Mitran S; Iversen ES; Zhong P
    Ultrasound Med Biol; 2016 Nov; 42(11):2662-2675. PubMed ID: 27515177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimising an escalating shockwave amplitude treatment strategy to protect the kidney from injury during shockwave lithotripsy.
    Handa RK; McAteer JA; Connors BA; Liu Z; Lingeman JE; Evan AP
    BJU Int; 2012 Dec; 110(11 Pt C):E1041-7. PubMed ID: 22612388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled cavitation to augment SWL stone comminution: mechanistic insights in vitro.
    Duryea AP; Roberts WW; Cain CA; Hall TL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):301-9. PubMed ID: 23357904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prefocal alignment improves stone comminution in shockwave lithotripsy.
    Sokolov DL; Bailey MR; Crum LA; Blomgren PM; Connors BA; Evan AP
    J Endourol; 2002 Dec; 16(10):709-15. PubMed ID: 12542872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-Vivo relation between CT attenuation value and shockwave fragmentation.
    Hurtado F; Gutiérrez J; Castaño-Tostado E; Bustos J; Mues E; Del Sol Quintero M; Méndez A; Loske AM
    J Endourol; 2007 Mar; 21(3):343-6. PubMed ID: 17444784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of escalating versus fixed voltage treatment on stone comminution and renal injury during extracorporeal shock wave lithotripsy: a prospective randomized trial.
    Lambert EH; Walsh R; Moreno MW; Gupta M
    J Urol; 2010 Feb; 183(2):580-4. PubMed ID: 20018316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent developments in SWL physics research.
    Zhong P; Xi X; Zhu S; Cocks FH; Preminger GM
    J Endourol; 1999 Nov; 13(9):611-7. PubMed ID: 10608511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stone comminution correlates with the average peak pressure incident on a stone during shock wave lithotripsy.
    Smith N; Zhong P
    J Biomech; 2012 Oct; 45(15):2520-5. PubMed ID: 22935690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of energy density and acoustic cavitation in shock wave lithotripsy.
    Loske AM
    Ultrasonics; 2010 Feb; 50(2):300-5. PubMed ID: 19819511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments.
    Zhong P; Zhou Y
    J Acoust Soc Am; 2001 Dec; 110(6):3283-91. PubMed ID: 11785829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shock wave lithotripsy: a randomized, double-blind trial to compare immediate versus delayed voltage escalation.
    Honey RJ; Ray AA; Ghiculete D; ; Pace KT
    Urology; 2010 Jan; 75(1):38-43. PubMed ID: 19896176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced High-Rate Shockwave Lithotripsy Stone Comminution in an In Vivo Porcine Model Using Acoustic Bubble Coalescence.
    Alavi Tamaddoni H; Roberts WW; Duryea AP; Cain CA; Hall TL
    J Endourol; 2016 Dec; 30(12):1321-1325. PubMed ID: 27762629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of a modified acoustic lens for electromagnetic shock wave lithotripters in a swine model.
    Mancini JG; Neisius A; Smith N; Sankin G; Astroza GM; Lipkin ME; Simmons WN; Preminger GM; Zhong P
    J Urol; 2013 Sep; 190(3):1096-101. PubMed ID: 23485509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.