These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 17000041)
1. TOL plasmid transfer during bacterial conjugation in vitro and rhizoremediation of oil compounds in vivo. Jussila MM; Zhao J; Suominen L; Lindström K Environ Pollut; 2007 Mar; 146(2):510-24. PubMed ID: 17000041 [TBL] [Abstract][Full Text] [Related]
2. Genetic diversity of culturable bacteria in oil-contaminated rhizosphere of Galega orientalis. Jussila MM; Jurgens G; Lindström K; Suominen L Environ Pollut; 2006 Jan; 139(2):244-57. PubMed ID: 16055251 [TBL] [Abstract][Full Text] [Related]
3. Conjugal transfer of a TOL-like plasmid and extension of the catabolic potential of Pseudomonas putida F1. Hallier-Soulier S; Ducrocq V; Truffaut N Can J Microbiol; 1999 Nov; 45(11):898-904. PubMed ID: 10588042 [TBL] [Abstract][Full Text] [Related]
4. [Analysis of aromatic hydrocarbon catabolic genes in strains isolated from soil in Patagonia]. Vacca GS; Kiesel B; Wünsche L; Pucci OH Rev Argent Microbiol; 2002; 34(3):138-49. PubMed ID: 12415896 [TBL] [Abstract][Full Text] [Related]
5. Complete nucleotide sequence of the self-transmissible TOL plasmid pD2RT provides new insight into arrangement of toluene catabolic plasmids. Jutkina J; Hansen LH; Li L; Heinaru E; Vedler E; Jõesaar M; Heinaru A Plasmid; 2013 Nov; 70(3):393-405. PubMed ID: 24095800 [TBL] [Abstract][Full Text] [Related]
6. Isolation and characterization of naphthalene-catabolic genes and plasmids from oil-contaminated soil by using two cultivation-independent approaches. Ono A; Miyazaki R; Sota M; Ohtsubo Y; Nagata Y; Tsuda M Appl Microbiol Biotechnol; 2007 Feb; 74(2):501-10. PubMed ID: 17096121 [TBL] [Abstract][Full Text] [Related]
7. Recipient range of IncP-7 conjugative plasmid pCAR2 from Pseudomonas putida HS01 is broader than from other Pseudomonas strains. Shintani M; Habe H; Tsuda M; Omori T; Yamane H; Nojiri H Biotechnol Lett; 2005 Dec; 27(23-24):1847-53. PubMed ID: 16328978 [TBL] [Abstract][Full Text] [Related]
8. Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site. Hendrickx B; Junca H; Vosahlova J; Lindner A; Rüegg I; Bucheli-Witschel M; Faber F; Egli T; Mau M; Schlömann M; Brennerova M; Brenner V; Pieper DH; Top EM; Dejonghe W; Bastiaens L; Springael D J Microbiol Methods; 2006 Feb; 64(2):250-65. PubMed ID: 15949858 [TBL] [Abstract][Full Text] [Related]
9. [Horizontal transfer of catabolic plasmids in the process of naphthalene biodegradation in model soil systems]. Akhmetov LI; Filonov AE; Puntus IF; Kosheleva IA; Nechaeva IA; Yonge DR; Petersen JN; Boronin AM Mikrobiologiia; 2008; 77(1):29-39. PubMed ID: 18365719 [TBL] [Abstract][Full Text] [Related]
10. Description of two biovars in the Rhizobium galegae species: biovar orientalis and biovar officinalis. Radeva G; Jurgens G; Niemi M; Nick G; Suominen L; Lindström K Syst Appl Microbiol; 2001 Jul; 24(2):192-205. PubMed ID: 11518322 [TBL] [Abstract][Full Text] [Related]
11. Strain selection and improvement of gene transfer for genetic manipulation of Pseudomonas savastanoi isolated from olive knots. Pérez-Martínez I; Rodriguez-Moreno L; Matas IM; Ramos C Res Microbiol; 2007; 158(1):60-9. PubMed ID: 17113758 [TBL] [Abstract][Full Text] [Related]
12. [Degradation of 3-chlorobenzoic acid by a Pseudomonas putida strain]. Grishchenkov VG; Fedechkina IE; Baskunov BP; Anisimova LA; Boronin AM Mikrobiologiia; 1983; 52(5):771-6. PubMed ID: 6664313 [TBL] [Abstract][Full Text] [Related]
14. [Hybrid plasmid pBS251 containing genes for n-alkane degradation]. Andreeva AL; Boronin AM Mol Gen Mikrobiol Virusol; 1985 Nov; (11):11-6. PubMed ID: 3025683 [TBL] [Abstract][Full Text] [Related]
15. Nucleotide sequence of xylE from the TOL pDK1 plasmid and structural comparison with isofunctional catechol-2,3-dioxygenase genes from TOL, pWW0 and NAH7. Benjamin RC; Voss JA; Kunz DA J Bacteriol; 1991 Apr; 173(8):2724-8. PubMed ID: 1672868 [TBL] [Abstract][Full Text] [Related]
16. New derivatives of TOL plasmid pWW0. Sarand I; Mäe A; Vilu R; Heinaru A J Gen Microbiol; 1993 Oct; 139(10):2379-85. PubMed ID: 8254307 [TBL] [Abstract][Full Text] [Related]
17. Stability of TOL plasmid pWW0 in Pseudomonas putida mt-2 under non-selective conditions in continuous culture. Duetz WA; van Andel JG J Gen Microbiol; 1991 Jun; 137(6):1369-74. PubMed ID: 1919511 [TBL] [Abstract][Full Text] [Related]
18. Aromatic hydrocarbon degradation patterns and catechol 2,3-dioxygenase genes in microbial cultures from deep anoxic hypersaline lakes in the eastern Mediterranean sea. Brusa T; Borin S; Ferrari F; Sorlini C; Corselli C; Daffonchio D Microbiol Res; 2001; 156(1):49-58. PubMed ID: 11372653 [TBL] [Abstract][Full Text] [Related]
19. Role of eukaryotic microbiota in soil survival and catabolic performance of the 2,4-D herbicide degrading bacteria Cupriavidus necator JMP134. Manzano M; Morán AC; Tesser B; González B Antonie Van Leeuwenhoek; 2007 Feb; 91(2):115-26. PubMed ID: 17043913 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional regulation of pWW0 transfer genes in Pseudomonas putida KT2440. Lambertsen LM; Molin S; Kroer N; Thomas CM Plasmid; 2004 Nov; 52(3):169-81. PubMed ID: 15518874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]