These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17000056)

  • 1. Sleep does not enhance the recovery of deprived eye responses in developing visual cortex.
    Dadvand L; Stryker MP; Frank MG
    Neuroscience; 2006 Dec; 143(3):815-26. PubMed ID: 17000056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep-dependent plasticity requires cortical activity.
    Jha SK; Jones BE; Coleman T; Steinmetz N; Law CT; Griffin G; Hawk J; Dabbish N; Kalatsky VA; Frank MG
    J Neurosci; 2005 Oct; 25(40):9266-74. PubMed ID: 16207886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term monocular deprivation alters early components of visual evoked potentials.
    Lunghi C; Berchicci M; Morrone MC; Di Russo F
    J Physiol; 2015 Oct; 593(19):4361-72. PubMed ID: 26119530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical period of experience-driven axon retraction in the pharmacologically inhibited visual cortex.
    Morishima Y; Toigawa M; Ohmura N; Yoneda T; Tagane Y; Hata Y
    Cereb Cortex; 2013 Oct; 23(10):2423-8. PubMed ID: 22875858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid eye movement sleep deprivation in post-critical period, adolescent rats alters the balance between inhibitory and excitatory mechanisms in visual cortex.
    Shaffery JP; Lopez J; Bissette G; Roffwarg HP
    Neurosci Lett; 2006 Jan; 393(2-3):131-5. PubMed ID: 16236445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monocular deprivation enhances the nuclear signalling of extracellular signal-regulated kinase in the developing visual cortex.
    Takamura H; Ichisaka S; Hayashi C; Maki H; Hata Y
    Eur J Neurosci; 2007 Nov; 26(10):2884-98. PubMed ID: 17973925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enduring critical period plasticity visualized by transcranial flavoprotein imaging in mouse primary visual cortex.
    Tohmi M; Kitaura H; Komagata S; Kudoh M; Shibuki K
    J Neurosci; 2006 Nov; 26(45):11775-85. PubMed ID: 17093098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different mechanisms for loss and recovery of binocularity in the visual cortex.
    Liao DS; Mower AF; Neve RL; Sato-Bigbee C; Ramoa AS
    J Neurosci; 2002 Oct; 22(20):9015-23. PubMed ID: 12388608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein synthesis-independent plasticity mediates rapid and precise recovery of deprived eye responses.
    Krahe TE; Medina AE; de Bittencourt-Navarrete RE; Colello RJ; Ramoa AS
    Neuron; 2005 Oct; 48(2):329-43. PubMed ID: 16242412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A switch from inter-ocular to inter-hemispheric suppression following monocular deprivation in the rat visual cortex.
    Pietrasanta M; Restani L; Cerri C; Olcese U; Medini P; Caleo M
    Eur J Neurosci; 2014 Jul; 40(1):2283-92. PubMed ID: 24689940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sleep enhances plasticity in the developing visual cortex.
    Frank MG; Issa NP; Stryker MP
    Neuron; 2001 Apr; 30(1):275-87. PubMed ID: 11343661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of different forms of monocular deprivation on primary visual cortex maps.
    Jaffer S; Vorobyov V; Sengpiel F
    Vis Neurosci; 2012 Sep; 29(4-5):247-53. PubMed ID: 22882840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurotrophin-4/5 alters responses and blocks the effect of monocular deprivation in cat visual cortex during the critical period.
    Gillespie DC; Crair MC; Stryker MP
    J Neurosci; 2000 Dec; 20(24):9174-86. PubMed ID: 11124995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity.
    Liao DS; Krahe TE; Prusky GT; Medina AE; Ramoa AS
    J Neurophysiol; 2004 Oct; 92(4):2113-21. PubMed ID: 15102897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blockade of postsynaptic activity in sleep inhibits developmental plasticity in visual cortex.
    Frank MG; Jha SK; Coleman T
    Neuroreport; 2006 Sep; 17(13):1459-63. PubMed ID: 16932158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue plasminogen activator mediates reverse occlusion plasticity in visual cortex.
    Müller CM; Griesinger CB
    Nat Neurosci; 1998 May; 1(1):47-53. PubMed ID: 10195108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of digesting chondroitin sulfate proteoglycans on plasticity in cat primary visual cortex.
    Vorobyov V; Kwok JC; Fawcett JW; Sengpiel F
    J Neurosci; 2013 Jan; 33(1):234-43. PubMed ID: 23283337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.
    Mrsic-Flogel TD; Hofer SB; Ohki K; Reid RC; Bonhoeffer T; Hübener M
    Neuron; 2007 Jun; 54(6):961-72. PubMed ID: 17582335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The critical period for ocular dominance plasticity in the Ferret's visual cortex.
    Issa NP; Trachtenberg JT; Chapman B; Zahs KR; Stryker MP
    J Neurosci; 1999 Aug; 19(16):6965-78. PubMed ID: 10436053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Horizontal optokinetic nystagmus in the cat: effects of long-term monocular deprivation.
    Malach R; Strong NP; Van Sluyters RC
    Brain Res; 1984 Apr; 315(2):193-205. PubMed ID: 6722586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.