These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 17000703)

  • 1. C-terminal truncation and Parkinson's disease-associated mutations down-regulate the protein serine/threonine kinase activity of PTEN-induced kinase-1.
    Sim CH; Lio DS; Mok SS; Masters CL; Hill AF; Culvenor JG; Cheng HC
    Hum Mol Genet; 2006 Nov; 15(21):3251-62. PubMed ID: 17000703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the regulatory and catalytic domains of PTEN-induced kinase-1 (PINK1).
    Sim CH; Gabriel K; Mills RD; Culvenor JG; Cheng HC
    Hum Mutat; 2012 Oct; 33(10):1408-22. PubMed ID: 22644621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic and in silico structural analysis of the Parkinson disease-related kinase PINK1.
    Cardona F; Sánchez-Mut JV; Dopazo H; Pérez-Tur J
    Hum Mutat; 2011 Apr; 32(4):369-78. PubMed ID: 21412950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical aspects of the neuroprotective mechanism of PTEN-induced kinase-1 (PINK1).
    Mills RD; Sim CH; Mok SS; Mulhern TD; Culvenor JG; Cheng HC
    J Neurochem; 2008 Apr; 105(1):18-33. PubMed ID: 18221368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic mutations and functions of PINK1.
    Kawajiri S; Saiki S; Sato S; Hattori N
    Trends Pharmacol Sci; 2011 Oct; 32(10):573-80. PubMed ID: 21784538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations.
    Woodroof HI; Pogson JH; Begley M; Cantley LC; Deak M; Campbell DG; van Aalten DM; Whitworth AJ; Alessi DR; Muqit MM
    Open Biol; 2011 Nov; 1(3):110012. PubMed ID: 22645651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PINK1 mutants associated with recessive Parkinson's disease are defective in inhibiting mitochondrial release of cytochrome c.
    Wang HL; Chou AH; Yeh TH; Li AH; Chen YL; Kuo YL; Tsai SR; Yu ST
    Neurobiol Dis; 2007 Nov; 28(2):216-26. PubMed ID: 17707122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial dynamics, cell death and the pathogenesis of Parkinson's disease.
    Büeler H
    Apoptosis; 2010 Nov; 15(11):1336-53. PubMed ID: 20131004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Molecular genetics of PINK1].
    Funayama M; Hattori N
    Brain Nerve; 2007 Aug; 59(8):831-8. PubMed ID: 17713119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the prevalence of PINK1 genetic variants in South African patients diagnosed with early- and late-onset Parkinson's disease.
    Keyser RJ; Lesage S; Brice A; Carr J; Bardien S
    Biochem Biophys Res Commun; 2010 Jul; 398(1):125-9. PubMed ID: 20558144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial translation initiation factor 3 gene polymorphism associated with Parkinson's disease.
    Abahuni N; Gispert S; Bauer P; Riess O; Krüger R; Becker T; Auburger G
    Neurosci Lett; 2007 Mar; 414(2):126-9. PubMed ID: 17267121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L347P PINK1 mutant that fails to bind to Hsp90/Cdc37 chaperones is rapidly degraded in a proteasome-dependent manner.
    Moriwaki Y; Kim YJ; Ido Y; Misawa H; Kawashima K; Endo S; Takahashi R
    Neurosci Res; 2008 May; 61(1):43-8. PubMed ID: 18359116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative expression proteomics and phosphoproteomics profile of brain from PINK1 knockout mice: insights into mechanisms of familial Parkinson's disease.
    Triplett JC; Zhang Z; Sultana R; Cai J; Klein JB; Büeler H; Butterfield DA
    J Neurochem; 2015 Jun; 133(5):750-65. PubMed ID: 25626353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PINK1 activation-turning on a promiscuous kinase.
    Aerts L; De Strooper B; Morais VA
    Biochem Soc Trans; 2015 Apr; 43(2):280-6. PubMed ID: 25849930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoplasmic localization and proteasomal degradation of N-terminally cleaved form of PINK1.
    Takatori S; Ito G; Iwatsubo T
    Neurosci Lett; 2008 Jan; 430(1):13-7. PubMed ID: 18031932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1.
    Pridgeon JW; Olzmann JA; Chin LS; Li L
    PLoS Biol; 2007 Jul; 5(7):e172. PubMed ID: 17579517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial membrane potential decrease caused by loss of PINK1 is not due to proton leak, but to respiratory chain defects.
    Amo T; Sato S; Saiki S; Wolf AM; Toyomizu M; Gautier CA; Shen J; Ohta S; Hattori N
    Neurobiol Dis; 2011 Jan; 41(1):111-8. PubMed ID: 20817094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silencing of PINK1 induces mitophagy via mitochondrial permeability transition in dopaminergic MN9D cells.
    Cui T; Fan C; Gu L; Gao H; Liu Q; Zhang T; Qi Z; Zhao C; Zhao H; Cai Q; Yang H
    Brain Res; 2011 Jun; 1394():1-13. PubMed ID: 21262209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of PINK1 function decreases PP2A activity and promotes autophagy in dopaminergic cells and a murine model.
    Qi Z; Yang W; Liu Y; Cui T; Gao H; Duan C; Lu L; Zhao C; Zhao H; Yang H
    Neurochem Int; 2011 Oct; 59(5):572-81. PubMed ID: 21672589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The variable C-terminal extension of G-protein-coupled receptor kinase 6 constitutes an accessorial autoregulatory domain.
    Vatter P; Stoesser C; Samel I; Gierschik P; Moepps B
    FEBS J; 2005 Dec; 272(23):6039-51. PubMed ID: 16302968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.