BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 17000752)

  • 1. Peptide length-based prediction of peptide-MHC class II binding.
    Chang ST; Ghosh D; Kirschner DE; Linderman JJ
    Bioinformatics; 2006 Nov; 22(22):2761-7. PubMed ID: 17000752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PepDist: a new framework for protein-peptide binding prediction based on learning peptide distance functions.
    Hertz T; Yanover C
    BMC Bioinformatics; 2006 Mar; 7 Suppl 1(Suppl 1):S3. PubMed ID: 16723006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties.
    Tung CW; Ho SY
    Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural prediction of peptides binding to MHC class I molecules.
    Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS
    Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward prediction of class II mouse major histocompatibility complex peptide binding affinity: in silico bioinformatic evaluation using partial least squares, a robust multivariate statistical technique.
    Hattotuwagama CK; Toseland CP; Guan P; Taylor DJ; Hemsley SL; Doytchinova IA; Flower DR
    J Chem Inf Model; 2006; 46(3):1491-502. PubMed ID: 16711768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-based identification of MHC binding peptides: Benchmarking of prediction accuracy.
    Kumar N; Mohanty D
    Mol Biosyst; 2010 Dec; 6(12):2508-20. PubMed ID: 20953500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties.
    Cui J; Han LY; Lin HH; Zhang HL; Tang ZQ; Zheng CJ; Cao ZW; Chen YZ
    Mol Immunol; 2007 Feb; 44(5):866-77. PubMed ID: 16806474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BiodMHC: an online server for the prediction of MHC class II-peptide binding affinity.
    Wang L; Pan D; Hu X; Xiao J; Gao Y; Zhang H; Zhang Y; Liu J; Zhu S
    J Genet Genomics; 2009 May; 36(5):289-96. PubMed ID: 19447377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning MHC I--peptide binding.
    Jojic N; Reyes-Gomez M; Heckerman D; Kadie C; Schueler-Furman O
    Bioinformatics; 2006 Jul; 22(14):e227-35. PubMed ID: 16873476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure.
    Lewis DP; Jebara T; Noble WS
    Bioinformatics; 2006 Nov; 22(22):2753-60. PubMed ID: 16966363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New horizons in mouse immunoinformatics: reliable in silico prediction of mouse class I histocompatibility major complex peptide binding affinity.
    Hattotuwagama CK; Guan P; Doytchinova IA; Flower DR
    Org Biomol Chem; 2004 Nov; 2(22):3274-83. PubMed ID: 15534705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving MHC binding peptide prediction by incorporating binding data of auxiliary MHC molecules.
    Zhu S; Udaka K; Sidney J; Sette A; Aoki-Kinoshita KF; Mamitsuka H
    Bioinformatics; 2006 Jul; 22(13):1648-55. PubMed ID: 16613909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bayesian regression approach to the prediction of MHC-II binding affinity.
    Zhang W; Liu J; Niu YQ; Wang L; Hu X
    Comput Methods Programs Biomed; 2008 Oct; 92(1):1-7. PubMed ID: 18562039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SVMHC: a server for prediction of MHC-binding peptides.
    Dönnes P; Kohlbacher O
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W194-7. PubMed ID: 16844990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers.
    Lundegaard C; Lund O; Nielsen M
    Bioinformatics; 2008 Jun; 24(11):1397-8. PubMed ID: 18413329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico prediction of peptide binding affinity to class I mouse major histocompatibility complexes: a comparative molecular similarity index analysis (CoMSIA) study.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    J Chem Inf Model; 2005; 45(5):1415-23. PubMed ID: 16180918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the affinity of epitope-peptides with class I MHC molecule HLA-A*0201: an application of amino acid-based peptide prediction.
    Du QS; Wei YT; Pang ZW; Chou KC; Huang RB
    Protein Eng Des Sel; 2007 Sep; 20(9):417-23. PubMed ID: 17681974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of MHC class II binders using the ant colony search strategy.
    Karpenko O; Shi J; Dai Y
    Artif Intell Med; 2005; 35(1-2):147-56. PubMed ID: 16061368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of human major histocompatibility complex class II binding peptides by continuous kernel discrimination method.
    He J; Yang G; Rao H; Li Z; Ding X; Chen Y
    Artif Intell Med; 2012 Jun; 55(2):107-15. PubMed ID: 22134095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.