These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 17000776)

  • 1. Breast cancer metastasis suppressor 1 functions as a corepressor by enhancing histone deacetylase 1-mediated deacetylation of RelA/p65 and promoting apoptosis.
    Liu Y; Smith PW; Jones DR
    Mol Cell Biol; 2006 Dec; 26(23):8683-96. PubMed ID: 17000776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of RelA/p65 promotes DNMT-1 recruitment to chromatin and represses transcription of the tumor metastasis suppressor gene BRMS1.
    Liu Y; Mayo MW; Nagji AS; Smith PW; Ramsey CS; Li D; Jones DR
    Oncogene; 2012 Mar; 31(9):1143-54. PubMed ID: 21765477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IkappaB kinase alpha-mediated derepression of SMRT potentiates acetylation of RelA/p65 by p300.
    Hoberg JE; Popko AE; Ramsey CS; Mayo MW
    Mol Cell Biol; 2006 Jan; 26(2):457-71. PubMed ID: 16382138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BRMS1 contributes to the negative regulation of uPA gene expression through recruitment of HDAC1 to the NF-kappaB binding site of the uPA promoter.
    Cicek M; Fukuyama R; Cicek MS; Sizemore S; Welch DR; Sizemore N; Casey G
    Clin Exp Metastasis; 2009; 26(3):229-37. PubMed ID: 19165610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression.
    Ashburner BP; Westerheide SD; Baldwin AS
    Mol Cell Biol; 2001 Oct; 21(20):7065-77. PubMed ID: 11564889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breast cancer metastasis suppressor 1 (BRMS1) inhibits osteopontin transcription by abrogating NF-kappaB activation.
    Samant RS; Clark DW; Fillmore RA; Cicek M; Metge BJ; Chandramouli KH; Chambers AF; Casey G; Welch DR; Shevde LA
    Mol Cancer; 2007 Jan; 6():6. PubMed ID: 17227585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of BRMS1 promotes a mesenchymal phenotype through NF-κB-dependent regulation of Twist1.
    Liu Y; Mayo MW; Xiao A; Hall EH; Amin EB; Kadota K; Adusumilli PS; Jones DR
    Mol Cell Biol; 2015 Jan; 35(1):303-17. PubMed ID: 25368381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exchange of a nuclear corepressor between NF-kappaB and CREB mediates inhibition of phosphoenolpyruvate carboxykinase transcription by NF-kappaB.
    Yan JH; Gao ZG; Ye JP; Weng JP
    Chin Med J (Engl); 2010 Jan; 123(2):221-6. PubMed ID: 20137375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone Deacetylase Inhibitor RGFP109 Overcomes Temozolomide Resistance by Blocking NF-κB-Dependent Transcription in Glioblastoma Cell Lines.
    Li ZY; Li QZ; Chen L; Chen BD; Wang B; Zhang XJ; Li WP
    Neurochem Res; 2016 Dec; 41(12):3192-3205. PubMed ID: 27632183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benzyl isothiocyanate-mediated inhibition of histone deacetylase leads to NF-kappaB turnoff in human pancreatic carcinoma cells.
    Batra S; Sahu RP; Kandala PK; Srivastava SK
    Mol Cancer Ther; 2010 Jun; 9(6):1596-608. PubMed ID: 20484017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations of BRMS1-ARID4A interaction modify gene expression but still suppress metastasis in human breast cancer cells.
    Hurst DR; Xie Y; Vaidya KS; Mehta A; Moore BP; Accavitti-Loper MA; Samant RS; Saxena R; Silveira AC; Welch DR
    J Biol Chem; 2008 Mar; 283(12):7438-44. PubMed ID: 18211900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of IkappaB kinase (IKK)-mediated RelA serine 536 phosphorylation sensitizes human multiple myeloma cells to histone deacetylase (HDAC) inhibitors.
    Dai Y; Chen S; Wang L; Pei XY; Funk VL; Kramer LB; Dent P; Grant S
    J Biol Chem; 2011 Sep; 286(39):34036-50. PubMed ID: 21816815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New molecular bridge between RelA/p65 and NF-κB target genes via histone acetyltransferase TIP60 cofactor.
    Kim JW; Jang SM; Kim CH; An JH; Kang EJ; Choi KH
    J Biol Chem; 2012 Mar; 287(10):7780-91. PubMed ID: 22249179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BRMS1 inhibits expression of NF-kappaB subunit p65, uPA and OPN in ovarian cancer cells.
    Sheng XJ; Zhou DM; Liu Q; Lou SY; Song QY; Zhou YQ
    Eur J Gynaecol Oncol; 2014; 35(3):236-42. PubMed ID: 24984534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proenkephalin assists stress-activated apoptosis through transcriptional repression of NF-kappaB- and p53-regulated gene targets.
    McTavish N; Copeland LA; Saville MK; Perkins ND; Spruce BA
    Cell Death Differ; 2007 Sep; 14(9):1700-10. PubMed ID: 17599100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PIAS3 suppresses NF-kappaB-mediated transcription by interacting with the p65/RelA subunit.
    Jang HD; Yoon K; Shin YJ; Kim J; Lee SY
    J Biol Chem; 2004 Jun; 279(23):24873-80. PubMed ID: 15140884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zac1 is a histone acetylation-regulated NF-κB suppressor that mediates histone deacetylase inhibitor-induced apoptosis.
    Shu G; Tang Y; Zhou Y; Wang C; Song JG
    Cell Death Differ; 2011 Dec; 18(12):1825-35. PubMed ID: 21546906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein kinase Cdelta activates RelA/p65 and nuclear factor-kappaB signaling in response to tumor necrosis factor-alpha.
    Lu ZG; Liu H; Yamaguchi T; Miki Y; Yoshida K
    Cancer Res; 2009 Jul; 69(14):5927-35. PubMed ID: 19549902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective repression of YKL-40 by NF-kappaB in glioma cell lines involves recruitment of histone deacetylase-1 and -2.
    Bhat KP; Pelloski CE; Zhang Y; Kim SH; deLaCruz C; Rehli M; Aldape KD
    FEBS Lett; 2008 Sep; 582(21-22):3193-200. PubMed ID: 18708058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blockade of histone deacetylase inhibitor-induced RelA/p65 acetylation and NF-kappaB activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-Jun N-terminal kinase 1 activation.
    Dai Y; Rahmani M; Dent P; Grant S
    Mol Cell Biol; 2005 Jul; 25(13):5429-44. PubMed ID: 15964800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.