These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 1700131)

  • 1. Mutational analysis of conserved nucleotides in a self-splicing group I intron.
    Couture S; Ellington AD; Gerber AS; Cherry JM; Doudna JA; Green R; Hanna M; Pace U; Rajagopal J; Szostak JW
    J Mol Biol; 1990 Oct; 215(3):345-58. PubMed ID: 1700131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimum secondary structure requirements for catalytic activity of a self-splicing group I intron.
    Beaudry AA; Joyce GF
    Biochemistry; 1990 Jul; 29(27):6534-9. PubMed ID: 2207095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme.
    Lehnert V; Jaeger L; Michel F; Westhof E
    Chem Biol; 1996 Dec; 3(12):993-1009. PubMed ID: 9000010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the nucleotides in the A-rich bulge of the Tetrahymena ribozyme responsible for an efficient self-splicing reaction.
    Ikawa Y; Okada A; Imahori H; Shiraishi H; Inoue T
    J Biochem; 1997 Oct; 122(4):878-82. PubMed ID: 9399595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations in a semiconserved region of the Tetrahymena intron.
    Pace U; Szostak JW
    FEBS Lett; 1991 Mar; 280(1):171-4. PubMed ID: 2009960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved base-pairings between C266-A268 and U307-G309 in the P7 of the Tetrahymena ribozyme is nonessential for the in vitro self-splicing reaction.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2001 Jun; 284(4):948-54. PubMed ID: 11409885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3' splice site-binding sequence in the catalytic core of a group I intron.
    Burke JM; Esherick JS; Burfeind WR; King JL
    Nature; 1990 Mar; 344(6261):80-2. PubMed ID: 2406615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of RNA containing inosine: analysis of the sequence requirements for the 5' splice site of the Tetrahymena group I intron.
    Green R; Szostak JW; Benner SA; Rich A; Usman N
    Nucleic Acids Res; 1991 Aug; 19(15):4161-6. PubMed ID: 1714564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic and genetic evidence for base-triples in the catalytic domain of group I introns.
    Michel F; Ellington AD; Couture S; Szostak JW
    Nature; 1990 Oct; 347(6293):578-80. PubMed ID: 2215683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA structure, not sequence, determines the 5' splice-site specificity of a group I intron.
    Doudna JA; Cormack BP; Szostak JW
    Proc Natl Acad Sci U S A; 1989 Oct; 86(19):7402-6. PubMed ID: 2678103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tertiary interaction in the Tetrahymena intron contributes to selection of the 5' splice site.
    Downs WD; Cech TR
    Genes Dev; 1994 May; 8(10):1198-211. PubMed ID: 7926724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic activity of the conserved core of a group I self-splicing intron.
    Szostak JW
    Nature; 1986 Jul 3-9; 322(6074):83-6. PubMed ID: 3014350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of nonconserved helices near the 3' end of the rRNA intron of Tetrahymena thermophila alters self-splicing but not core catalytic activity.
    Barfod ET; Cech TR
    Genes Dev; 1988 Jun; 2(6):652-63. PubMed ID: 3417146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A region of group I introns that contains universally conserved residues but is not essential for self-splicing.
    Williams KP; Fujimoto DN; Inoue T
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10400-4. PubMed ID: 1279677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of phosphate groups important to self-splicing of the Tetrahymena rRNA intron as determined by phosphorothioate substitution.
    Waring RB
    Nucleic Acids Res; 1989 Dec; 17(24):10281-93. PubMed ID: 2690016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirements for alternative forms of the activator domain, P5abc, in the Tetrahymena ribozyme.
    Naito Y; Shiraishi H; Inoue T
    FEBS Lett; 2000 Jan; 466(2-3):273-8. PubMed ID: 10682842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A conserved base pair within helix P4 of the Tetrahymena ribozyme helps to form the tertiary structure required for self-splicing.
    Flor PJ; Flanegan JB; Cech TR
    EMBO J; 1989 Nov; 8(11):3391-9. PubMed ID: 2684642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-directed mutagenesis of core sequence elements 9R', 9L, 9R, and 2 in self-splicing Tetrahymena pre-rRNA.
    Williamson CL; Tierney WM; Kerker BJ; Burke JM
    J Biol Chem; 1987 Oct; 262(30):14672-82. PubMed ID: 3667597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic activity is retained in the Tetrahymena group I intron despite removal of the large extension of element P5.
    Joyce GF; van der Horst G; Inoue T
    Nucleic Acids Res; 1989 Oct; 17(19):7879-89. PubMed ID: 2477801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.