These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 1700131)

  • 21. Compensatory mutations demonstrate that P8 and P6 are RNA secondary structure elements important for processing of a group I intron.
    Williamson CL; Desai NM; Burke JM
    Nucleic Acids Res; 1989 Jan; 17(2):675-89. PubMed ID: 2915927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Splice site selection by intron aI3 of the COX1 gene from Saccharomyces cerevisiae.
    Winter AJ; Groot Koerkamp MJ; Tabak HF
    Nucleic Acids Res; 1992 Aug; 20(15):3897-904. PubMed ID: 1324471
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The phylogenetically predicted base-pairing interaction between alpha and alpha' is required for group II splicing in vitro.
    Harris-Kerr CL; Zhang M; Peebles CL
    Proc Natl Acad Sci U S A; 1993 Nov; 90(22):10658-62. PubMed ID: 7504276
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The guanosine binding mechanism of the Tetrahymena group I intron.
    Kitamura A; Muto Y; Watanabe S; Kim I; Ito T; Nishiya Y; Ohtsuki T; Kawai G; Watanabe K; Hosono K; Takaku H; Katoh E; Yamazaki T; Inoue T; Yokoyama S
    Nucleic Acids Symp Ser; 1999; (42):191-2. PubMed ID: 10780444
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Close relationship between certain nuclear and mitochondrial introns. Implications for the mechanism of RNA splicing.
    Waring RB; Scazzocchio C; Brown TA; Davies RW
    J Mol Biol; 1983 Jul; 167(3):595-605. PubMed ID: 6876158
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A base triple in the Tetrahymena group I core affects the reaction equilibrium via a threshold effect.
    Karbstein K; Tang KH; Herschlag D
    RNA; 2004 Nov; 10(11):1730-9. PubMed ID: 15496521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Tetrahymena intron nucleotide connected to the GTP/arginine site.
    Yarus M; Levine J; Morin GB; Cech TR
    Nucleic Acids Res; 1989 Sep; 17(17):6969-81. PubMed ID: 2674904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of a conserved J8/7 X P4 base-triple in the Tetrahymena ribozyme.
    Ohki Y; Ikawa Y; Shiraishi H; Inoue T
    J Biochem; 2002 Nov; 132(5):713-8. PubMed ID: 12417020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of a model for intron RNA secondary structure relevant to RNA self-splicing--a review.
    Waring RB; Davies RW
    Gene; 1984 Jun; 28(3):277-91. PubMed ID: 6086458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissecting and analyzing the secondary structure domains of group I introns through the use of chimeric intron constructs.
    Tanner NK; Sargueil B
    J Mol Biol; 1995 Oct; 252(5):583-95. PubMed ID: 7563076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional and sequence analysis of splicing defective nrdB mutants of bacteriophage T4 reveal new bases and a new sub-domain required for group I intron self-splicing.
    Lal SK; Hall DH
    Biochim Biophys Acta; 1997 Jan; 1350(1):89-97. PubMed ID: 9003462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Footprinting the sites of interaction of antibiotics with catalytic group I intron RNA.
    von Ahsen U; Noller HF
    Science; 1993 Jun; 260(5113):1500-3. PubMed ID: 8502993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-splicing of the Tetrahymena intron from mRNA in mammalian cells.
    Hagen M; Cech TR
    EMBO J; 1999 Nov; 18(22):6491-500. PubMed ID: 10562561
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing the role of a secondary structure element at the 5'- and 3'-splice sites in group I intron self-splicing: the tetrahymena L-16 ScaI ribozyme reveals a new role of the G.U pair in self-splicing.
    Karbstein K; Lee J; Herschlag D
    Biochemistry; 2007 Apr; 46(16):4861-75. PubMed ID: 17385892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutagenesis and comparative sequence analysis of a base triple joining the two domains of group I ribozymes.
    Tanner MA; Anderson EM; Gutell RR; Cech TR
    RNA; 1997 Sep; 3(9):1037-51. PubMed ID: 9292502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro genetic analysis of the hinge region between helical elements P5-P4-P6 and P7-P3-P8 in the sunY group I self-splicing intron.
    Green R; Szostak JW
    J Mol Biol; 1994 Jan; 235(1):140-55. PubMed ID: 7507168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trans-activation of the Tetrahymena group I intron ribozyme via a non-native RNA-RNA interaction.
    Ikawa Y; Shiraishi H; Inoue T
    Nucleic Acids Res; 1999 Apr; 27(7):1650-5. PubMed ID: 10075996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconstitution of a group I intron self-splicing reaction with an activator RNA.
    van der Horst G; Christian A; Inoue T
    Proc Natl Acad Sci U S A; 1991 Jan; 88(1):184-8. PubMed ID: 1986364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme.
    Mohr G; Caprara MG; Guo Q; Lambowitz AM
    Nature; 1994 Jul; 370(6485):147-50. PubMed ID: 8022484
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trans-activation of the Tetrahymena ribozyme by its P2-2.1 domains.
    Ikawa Y; Shiraishi H; Inoue T
    J Biochem; 1998 Mar; 123(3):528-33. PubMed ID: 9538238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.