BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 17001605)

  • 21. The role of Bgl2p in the transition to filamentous cells during biofilm formation by Candida albicans.
    Chen X; Zhang R; Takada A; Iwatani S; Oka C; Kitamoto T; Kajiwara S
    Mycoses; 2017 Feb; 60(2):96-103. PubMed ID: 27597232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Some biological features of Candida albicans mutants for genes coding fungal proteins containing the CFEM domain.
    Pérez A; Ramage G; Blanes R; Murgui A; Casanova M; Martínez JP
    FEMS Yeast Res; 2011 May; 11(3):273-84. PubMed ID: 21205162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. LC-MS analysis reveals biological and metabolic processes essential for Candida albicans biofilm growth.
    Munusamy K; Loke MF; Vadivelu J; Tay ST
    Microb Pathog; 2021 Mar; 152():104614. PubMed ID: 33202254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Linking quorum sensing regulation and biofilm formation by Candida albicans.
    Deveau A; Hogan DA
    Methods Mol Biol; 2011; 692():219-33. PubMed ID: 21031315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ZCF32, a fungus specific Zn(II)2 Cys6 transcription factor, is a repressor of the biofilm development in the human pathogen Candida albicans.
    Kakade P; Sadhale P; Sanyal K; Nagaraja V
    Sci Rep; 2016 Aug; 6():31124. PubMed ID: 27498700
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development.
    Bandara HM; K Cheung BP; Watt RM; Jin LJ; Samaranayake LP
    Mol Oral Microbiol; 2013 Feb; 28(1):54-69. PubMed ID: 23194472
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Involvement of amyloid proteins in the formation of biofilms in the pathogenic yeast Candida albicans.
    Mourer T; El Ghalid M; d'Enfert C; Bachellier-Bassi S
    Res Microbiol; 2021; 172(3):103813. PubMed ID: 33515679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of proteins highly expressed in the hyphae of Candida albicans by two-dimensional electrophoresis.
    Choi W; Yoo YJ; Kim M; Shin D; Jeon HB; Choi W
    Yeast; 2003 Sep; 20(12):1053-60. PubMed ID: 12961753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans.
    Verma-Gaur J; Qu Y; Harrison PF; Lo TL; Quenault T; Dagley MJ; Bellousoff M; Powell DR; Beilharz TH; Traven A
    PLoS Genet; 2015 Oct; 11(10):e1005590. PubMed ID: 26474309
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetics and genomics of Candida albicans biofilm formation.
    Nobile CJ; Mitchell AP
    Cell Microbiol; 2006 Sep; 8(9):1382-91. PubMed ID: 16848788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Candida albicans biofilm-induced vesicles confer drug resistance through matrix biogenesis.
    Zarnowski R; Sanchez H; Covelli AS; Dominguez E; Jaromin A; Bernhardt J; Mitchell KF; Heiss C; Azadi P; Mitchell A; Andes DR
    PLoS Biol; 2018 Oct; 16(10):e2006872. PubMed ID: 30296253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole.
    Borecká-Melkusová S; Moran GP; Sullivan DJ; Kucharíková S; Chorvát D; Bujdáková H
    Mycoses; 2009 Mar; 52(2):118-28. PubMed ID: 18627475
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomics to study Candida albicans biology and pathogenicity.
    Thomas DP; Pitarch A; Monteoliva L; Gil C; Lopez-Ribot JL
    Infect Disord Drug Targets; 2006 Dec; 6(4):335-41. PubMed ID: 17168799
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Host contributions to construction of three device-associated Candida albicans biofilms.
    Nett JE; Zarnowski R; Cabezas-Olcoz J; Brooks EG; Bernhardt J; Marchillo K; Mosher DF; Andes DR
    Infect Immun; 2015 Dec; 83(12):4630-8. PubMed ID: 26371129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stenotrophomonas maltophilia interferes via the DSF-mediated quorum sensing system with Candida albicans filamentation and its planktonic and biofilm modes of growth.
    de Rossi BP; García C; Alcaraz E; Franco M
    Rev Argent Microbiol; 2014; 46(4):288-97. PubMed ID: 25576410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Vitro Culturing and Screening of Candida albicans Biofilms.
    Gulati M; Lohse MB; Ennis CL; Gonzalez RE; Perry AM; Bapat P; Arevalo AV; Rodriguez DL; Nobile CJ
    Curr Protoc Microbiol; 2018 Aug; 50(1):e60. PubMed ID: 29995344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel allele of HWP1, isolated from a clinical strain of Candida albicans with defective hyphal growth and biofilm formation, has deletions of Gln/Pro and Ser/Thr repeats involved in cellular adhesion.
    Padovan AC; Chaves GM; Colombo AL; Briones MR
    Med Mycol; 2009 Dec; 47(8):824-35. PubMed ID: 19184714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteomic and metabolomic profiles demonstrate variation among free-living and symbiotic vibrio fischeri biofilms.
    Chavez-Dozal A; Gorman C; Nishiguchi MK
    BMC Microbiol; 2015 Oct; 15():226. PubMed ID: 26494154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans.
    Hsu CC; Lai WL; Chuang KC; Lee MH; Tsai YC
    Med Mycol; 2013 Jul; 51(5):473-82. PubMed ID: 23210679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional genomic profiling of Aspergillus fumigatus biofilm reveals enhanced production of the mycotoxin gliotoxin.
    Bruns S; Seidler M; Albrecht D; Salvenmoser S; Remme N; Hertweck C; Brakhage AA; Kniemeyer O; Müller FM
    Proteomics; 2010 Sep; 10(17):3097-107. PubMed ID: 20645385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.