These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 17002107)

  • 1. [Study on fabrication of controllable microchannel structure scaffolds and rotating dynamic culture].
    Li X; Li D; Wang L; Wang Z; Lu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):781-5. PubMed ID: 17002107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Rotating three-dimensional dynamic culture of osteoblasts seeded on segmental scaffolds with controlled internal channel architectures for construction of segmental tissue engineered bone in vitro].
    Wang L; Wang Z; Li X; Li DC; Xu SF; Lu BH
    Zhonghua Yi Xue Za Zhi; 2007 Jan; 87(3):200-3. PubMed ID: 17425853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Development of rotating perfusion bioreactor system and application for bone tissue engineering].
    Li X; Li D; Wang L; Wang Z; Lu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):66-70. PubMed ID: 17333894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Fabrication of scaffold with controlled porous structure and flow perfusion culture in vitro].
    Li X; Li DC; Wang L; Lu BH; Wang Z
    Sheng Wu Gong Cheng Xue Bao; 2005 Jul; 21(4):579-83. PubMed ID: 16176096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and detection of tissue-engineered bones with bio-derived scaffolds in a rotating bioreactor.
    Song K; Yang Z; Liu T; Zhi W; Li X; Deng L; Cui Z; Ma X
    Biotechnol Appl Biochem; 2006 Sep; 45(Pt 2):65-74. PubMed ID: 16681463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Experimental study of periosteal osteoblasts adhesion to artificial bone scaffolds based on rapid prototype].
    Xian SQ; Chai F; Zhao YM; Wang ZY; Liu XF; Li TC
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2004 Jun; 22(3):248-51. PubMed ID: 15293478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro.
    Shor L; Güçeri S; Wen X; Gandhi M; Sun W
    Biomaterials; 2007 Dec; 28(35):5291-7. PubMed ID: 17884162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A model for studying on mechanical responses of osteoblast seeded in three dimensional scaffold].
    Zhang C; Zhang X; Guo Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2006 Jan; 20(1):58-60. PubMed ID: 16457450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro culture of large bone substitutes in a new bioreactor: importance of the flow direction.
    Olivier V; Hivart P; Descamps M; Hardouin P
    Biomed Mater; 2007 Sep; 2(3):174-80. PubMed ID: 18458469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells.
    Venugopal J; Low S; Choon AT; Kumar AB; Ramakrishna S
    J Biomed Mater Res A; 2008 May; 85(2):408-17. PubMed ID: 17701970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a biodegradable scaffold with interconnected pores by heat fusion and its application to bone tissue engineering.
    Shin M; Abukawa H; Troulis MJ; Vacanti JP
    J Biomed Mater Res A; 2008 Mar; 84(3):702-9. PubMed ID: 17635029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional fabrication of engineered bone with human bio-derived bone scaffolds in a rotating wall vessel bioreactor.
    Song K; Liu T; Cui Z; Li X; Ma X
    J Biomed Mater Res A; 2008 Aug; 86(2):323-32. PubMed ID: 17969035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering.
    Shimizu K; Ito A; Honda H
    J Biosci Bioeng; 2007 Sep; 104(3):171-7. PubMed ID: 17964479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating novel technologies to fabricate smart scaffolds.
    Moroni L; de Wijn JR; van Blitterswijk CA
    J Biomater Sci Polym Ed; 2008; 19(5):543-72. PubMed ID: 18419938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perfusion affects the tissue developmental patterns of human mesenchymal stem cells in 3D scaffolds.
    Zhao F; Grayson WL; Ma T; Irsigler A
    J Cell Physiol; 2009 May; 219(2):421-9. PubMed ID: 19170078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoblast response to continuous phase macroporous scaffolds under static and dynamic culture conditions.
    Meretoja VV; Malin M; Seppälä JV; Närhi TO
    J Biomed Mater Res A; 2009 May; 89(2):317-25. PubMed ID: 18431787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X; Liu L; Zhang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method.
    Oh SH; Park IK; Kim JM; Lee JH
    Biomaterials; 2007 Mar; 28(9):1664-71. PubMed ID: 17196648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of microstereolithography in the development of three-dimensional cartilage regeneration scaffolds.
    Lee SJ; Kang HW; Park JK; Rhie JW; Hahn SK; Cho DW
    Biomed Microdevices; 2008 Apr; 10(2):233-41. PubMed ID: 17885804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical starch-based fibrous scaffold for bone tissue engineering applications.
    Martins A; Chung S; Pedro AJ; Sousa RA; Marques AP; Reis RL; Neves NM
    J Tissue Eng Regen Med; 2009 Jan; 3(1):37-42. PubMed ID: 19021239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.