These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 17002131)
21. The impact of critical point drying with liquid carbon dioxide on collagen-hydroxyapatite composite scaffolds. Sachlos E; Wahl DA; Triffitt JT; Czernuszka JT Acta Biomater; 2008 Sep; 4(5):1322-31. PubMed ID: 18440886 [TBL] [Abstract][Full Text] [Related]
22. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. Huang YX; Ren J; Chen C; Ren TB; Zhou XY J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961 [TBL] [Abstract][Full Text] [Related]
23. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453 [TBL] [Abstract][Full Text] [Related]
24. Hydroxyapatite-chitin materials as potential tissue engineered bone substitutes. Ge Z; Baguenard S; Lim LY; Wee A; Khor E Biomaterials; 2004 Mar; 25(6):1049-58. PubMed ID: 14615170 [TBL] [Abstract][Full Text] [Related]
25. [Study on biocompatibility of hydroxyapatite/high density polyethylene (HA/HDPE) nano-composites artificial ossicle]. Wang G; Zhu S; Tan G; Zhou K; Huang S; Zhao Y; Li Z; Huang B Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):607-10. PubMed ID: 18693441 [TBL] [Abstract][Full Text] [Related]
26. Development of a biodegradable scaffold with interconnected pores by heat fusion and its application to bone tissue engineering. Shin M; Abukawa H; Troulis MJ; Vacanti JP J Biomed Mater Res A; 2008 Mar; 84(3):702-9. PubMed ID: 17635029 [TBL] [Abstract][Full Text] [Related]
27. Development of a synthetic bone scaffold using porous hydroxyapatite for bone repair. Mustaffa R; Besar I; Andanastuti M Med J Malaysia; 2008 Jul; 63 Suppl A():95-6. PubMed ID: 19025001 [TBL] [Abstract][Full Text] [Related]
28. Development of superporous hydroxyapatites and their examination with a culture of primary rat osteoblasts. Sakamoto M; Nakasu M; Matsumoto T; Okihana H J Biomed Mater Res A; 2007 Jul; 82(1):238-42. PubMed ID: 17295224 [TBL] [Abstract][Full Text] [Related]
29. SEM and 3D synchrotron radiation micro-tomography in the study of bioceramic scaffolds for tissue-engineering applications. Peyrin F; Mastrogiacomo M; Cancedda R; Martinetti R Biotechnol Bioeng; 2007 Jun; 97(3):638-48. PubMed ID: 17089389 [TBL] [Abstract][Full Text] [Related]
30. Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Li J; Chen Y; Yin Y; Yao F; Yao K Biomaterials; 2007 Feb; 28(5):781-90. PubMed ID: 17056107 [TBL] [Abstract][Full Text] [Related]
31. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation. Smolen D; Chudoba T; Malka I; Kedzierska A; Lojkowski W; Swieszkowski W; Kurzydlowski KJ; Kolodziejczyk-Mierzynska M; Lewandowska-Szumiel M Int J Nanomedicine; 2013; 8():653-68. PubMed ID: 23431124 [TBL] [Abstract][Full Text] [Related]
32. A 12 month in vivo study on the response of bone to a hydroxyapatite-polymethylmethacrylate cranioplasty composite. Itokawa H; Hiraide T; Moriya M; Fujimoto M; Nagashima G; Suzuki R; Fujimoto T Biomaterials; 2007 Nov; 28(33):4922-7. PubMed ID: 17707904 [TBL] [Abstract][Full Text] [Related]
33. [Study on nano-hydroxyapatite/type I collagen artificial bone scaffold structure and osteogenic ability in vivo]. Xu J; Zhu L; Wang H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):567-70. PubMed ID: 18693432 [TBL] [Abstract][Full Text] [Related]
34. In vitro and in vivo study to the biocompatibility and biodegradation of hydroxyapatite/poly(vinyl alcohol)/gelatin composite. Wang M; Li Y; Wu J; Xu F; Zuo Y; Jansen JA J Biomed Mater Res A; 2008 May; 85(2):418-26. PubMed ID: 17701975 [TBL] [Abstract][Full Text] [Related]
35. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability. Oliveira JM; Silva SS; Malafaya PB; Rodrigues MT; Kotobuki N; Hirose M; Gomes ME; Mano JF; Ohgushi H; Reis RL J Biomed Mater Res A; 2009 Oct; 91(1):175-86. PubMed ID: 18780358 [TBL] [Abstract][Full Text] [Related]
36. Preparation and characterization of nano-hydroxyapatite/silk fibroin porous scaffolds. Liu L; Liu J; Wang M; Min S; Cai Y; Zhu L; Yao J J Biomater Sci Polym Ed; 2008; 19(3):325-38. PubMed ID: 18325234 [TBL] [Abstract][Full Text] [Related]
37. [Construction of tissue engineering bone with deproteinized bone as scaffold in vitro: experiment with rabbits]. Fan W; An H; Jiang DM; Cao BZ Zhonghua Yi Xue Za Zhi; 2006 Dec; 86(47):3349-52. PubMed ID: 17313832 [TBL] [Abstract][Full Text] [Related]
38. A bioactive triphasic ceramic-coated hydroxyapatite promotes proliferation and osteogenic differentiation of human bone marrow stromal cells. Nair MB; Bernhardt A; Lode A; Heinemann C; Thieme S; Hanke T; Varma H; Gelinsky M; John A J Biomed Mater Res A; 2009 Aug; 90(2):533-42. PubMed ID: 18563821 [TBL] [Abstract][Full Text] [Related]
39. [Changes in peripheral blood T lymphocyte subsets of rabbits in early stage after transplantation of tissue engineered bone constituted by biologically-derived scaffold]. Li Y; Yang Z; Qin T Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):130-4. PubMed ID: 17357458 [TBL] [Abstract][Full Text] [Related]
40. An electrospun triphasic nanofibrous scaffold for bone tissue engineering. Catledge SA; Clem WC; Shrikishen N; Chowdhury S; Stanishevsky AV; Koopman M; Vohra YK Biomed Mater; 2007 Jun; 2(2):142-50. PubMed ID: 18458448 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]