BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 17002292)

  • 1. Spectroscopic and computational studies of reduction of the metal versus the tetrapyrrole ring of coenzyme F430 from methyl-coenzyme M reductase.
    Dey M; Kunz RC; Van Heuvelen KM; Craft JL; Horng YC; Tang Q; Bocian DF; George SJ; Brunold TC; Ragsdale SW
    Biochemistry; 2006 Oct; 45(39):11915-33. PubMed ID: 17002292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic and computational characterization of the nickel-containing F430 cofactor of methyl-coenzyme M reductase.
    Craft JL; Horng YC; Ragsdale SW; Brunold TC
    J Biol Inorg Chem; 2004 Jan; 9(1):77-89. PubMed ID: 14663648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct determination of the number of electrons needed to reduce coenzyme F430 pentamethyl ester to the Ni(I) species exhibiting the electron paramagnetic resonance and ultraviolet-visible spectra characteristic for the MCR(red1) state of methyl-coenzyme M reductase.
    Piskorski R; Jaun B
    J Am Chem Soc; 2003 Oct; 125(43):13120-5. PubMed ID: 14570485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Handling methane: a Ni(i) F
    Wu J; Chen SL
    Chem Commun (Camb); 2021 Jan; 57(4):476-479. PubMed ID: 33326521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray absorption and resonance Raman studies of methyl-coenzyme M reductase indicating that ligand exchange and macrocycle reduction accompany reductive activation.
    Tang Q; Carrington PE; Horng YC; Maroney MJ; Ragsdale SW; Bocian DF
    J Am Chem Soc; 2002 Nov; 124(44):13242-56. PubMed ID: 12405853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nickel hydride complex in the active site of methyl-coenzyme m reductase: implications for the catalytic cycle.
    Harmer J; Finazzo C; Piskorski R; Ebner S; Duin EC; Goenrich M; Thauer RK; Reiher M; Schweiger A; Hinderberger D; Jaun B
    J Am Chem Soc; 2008 Aug; 130(33):10907-20. PubMed ID: 18652465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purified methyl-coenzyme-M reductase is activated when the enzyme-bound coenzyme F430 is reduced to the nickel(I) oxidation state by titanium(III) citrate.
    Goubeaud M; Schreiner G; Thauer RK
    Eur J Biochem; 1997 Jan; 243(1-2):110-4. PubMed ID: 9030728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic and kinetic studies of the reaction of bromopropanesulfonate with methyl-coenzyme M reductase.
    Kunz RC; Horng YC; Ragsdale SW
    J Biol Chem; 2006 Nov; 281(45):34663-76. PubMed ID: 16966321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometric and electronic structures of the Ni(I) and methyl-Ni(III) intermediates of methyl-coenzyme M reductase.
    Sarangi R; Dey M; Ragsdale SW
    Biochemistry; 2009 Apr; 48(14):3146-56. PubMed ID: 19243132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nickel oxidation states of F(430) cofactor in methyl-coenzyme M reductase.
    Craft JL; Horng YC; Ragsdale SW; Brunold TC
    J Am Chem Soc; 2004 Apr; 126(13):4068-9. PubMed ID: 15053571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two sub-states of the red2 state of methyl-coenzyme M reductase revealed by high-field EPR spectroscopy.
    Kern DI; Goenrich M; Jaun B; Thauer RK; Harmer J; Hinderberger D
    J Biol Inorg Chem; 2007 Nov; 12(8):1097-105. PubMed ID: 17690920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of alkyl-nickel adducts generated by reaction of methyl-coenzyme m reductase with brominated acids.
    Dey M; Kunz RC; Lyons DM; Ragsdale SW
    Biochemistry; 2007 Oct; 46(42):11969-78. PubMed ID: 17902704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the methyl-coenzyme-m reductase protein matrix on the hole-size and nonplanar deformations of coenzyme F430.
    Mbofana C; Zimmer M
    Inorg Chem; 2006 Mar; 45(6):2598-602. PubMed ID: 16529481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: in vitro interconversions among the EPR detectable MCR-red1 and MCR-red2 states.
    Mahlert F; Grabarse W; Kahnt J; Thauer RK; Duin EC
    J Biol Inorg Chem; 2002 Jan; 7(1-2):101-12. PubMed ID: 11862546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin density and coenzyme M coordination geometry of the ox1 form of methyl-coenzyme M reductase: a pulse EPR study.
    Harmer J; Finazzo C; Piskorski R; Bauer C; Jaun B; Duin EC; Goenrich M; Thauer RK; Van Doorslaer S; Schweiger A
    J Am Chem Soc; 2005 Dec; 127(50):17744-55. PubMed ID: 16351103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coenzyme B induced coordination of coenzyme M via its thiol group to Ni(I) of F430 in active methyl-coenzyme M reductase.
    Finazzo C; Harmer J; Bauer C; Jaun B; Duin EC; Mahlert F; Goenrich M; Thauer RK; Van Doorslaer S; Schweiger A
    J Am Chem Soc; 2003 Apr; 125(17):4988-9. PubMed ID: 12708843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moderating influence of proteins on nonplanar tetrapyrrole deformations: coenzyme F430 in methyl-coenzyme-M reductase.
    Todd LN; Zimmer M
    Inorg Chem; 2002 Dec; 41(25):6831-7. PubMed ID: 12470081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the reactivity of Ni in the active site of methyl-coenzyme M reductase with substrate analogues.
    Goenrich M; Mahlert F; Duin EC; Bauer C; Jaun B; Thauer RK
    J Biol Inorg Chem; 2004 Sep; 9(6):691-705. PubMed ID: 15365904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of organometallic and radical intermediates in the catalytic mechanism of methyl-coenzyme M reductase using the natural substrate methyl-coenzyme M and a coenzyme B substrate analogue.
    Dey M; Li X; Kunz RC; Ragsdale SW
    Biochemistry; 2010 Dec; 49(51):10902-11. PubMed ID: 21090696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic investigation of the nickel-containing porphinoid cofactor F(430). Comparison of the free cofactor in the (+)1, (+)2 and (+)3 oxidation states with the cofactor bound to methyl-coenzyme M reductase in the silent, red and ox forms.
    Duin EC; Signor L; Piskorski R; Mahlert F; Clay MD; Goenrich M; Thauer RK; Jaun B; Johnson MK
    J Biol Inorg Chem; 2004 Jul; 9(5):563-76. PubMed ID: 15160314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.