BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 17002292)

  • 21. Coordination chemistry of F430. Axial ligation equilibrium between square-planar and bis-aquo species in aqueous solution.
    Shiemke AK; Shelnutt JA; Scott RA
    J Biol Chem; 1989 Jul; 264(19):11236-45. PubMed ID: 2738065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new mechanism for methane production from methyl-coenzyme M reductase as derived from density functional calculations.
    Duin EC; McKee ML
    J Phys Chem B; 2008 Feb; 112(8):2466-82. PubMed ID: 18247503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The reaction mechanism of methyl-coenzyme M reductase: how an enzyme enforces strict binding order.
    Wongnate T; Ragsdale SW
    J Biol Chem; 2015 Apr; 290(15):9322-34. PubMed ID: 25691570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding.
    Grabarse W; Mahlert F; Duin EC; Goubeaud M; Shima S; Thauer RK; Lamzin V; Ermler U
    J Mol Biol; 2001 May; 309(1):315-30. PubMed ID: 11491299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The magnetic and electronic properties of Methanobacterium thermoautotrophicum (strain delta H) methyl coenzyme M reductase and its nickel tetrapyrrole cofactor F430. A low temperature magnetic circular dichroism study.
    Hamilton CL; Scott RA; Johnson MK
    J Biol Chem; 1989 Jul; 264(20):11605-13. PubMed ID: 2745408
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: In vitro induction of the nickel-based MCR-ox EPR signals from MCR-red2.
    Mahlert F; Bauer C; Jaun B; Thauer RK; Duin EC
    J Biol Inorg Chem; 2002 Apr; 7(4-5):500-13. PubMed ID: 11941508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea.
    Zheng K; Ngo PD; Owens VL; Yang XP; Mansoorabadi SO
    Science; 2016 Oct; 354(6310):339-342. PubMed ID: 27846569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of an F430 variant from archaea associated with anaerobic oxidation of methane.
    Mayr S; Latkoczy C; Krüger M; Günther D; Shima S; Thauer RK; Widdel F; Jaun B
    J Am Chem Soc; 2008 Aug; 130(32):10758-67. PubMed ID: 18642902
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Nickel(II)-Containing Vitamin B
    Brenig C; Prieto L; Oetterli R; Zelder F
    Angew Chem Int Ed Engl; 2018 Dec; 57(50):16308-16312. PubMed ID: 30352140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temperature dependence of methyl-coenzyme M reductase activity and of the formation of the methyl-coenzyme M reductase red2 state induced by coenzyme B.
    Goenrich M; Duin EC; Mahlert F; Thauer RK
    J Biol Inorg Chem; 2005 Jun; 10(4):333-42. PubMed ID: 15846525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the thioether product formed from the thiolytic cleavage of the alkyl-nickel bond in methyl-coenzyme M reductase.
    Kunz RC; Dey M; Ragsdale SW
    Biochemistry; 2008 Feb; 47(8):2661-7. PubMed ID: 18220418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Focusing on a nickel hydrocorphinoid in a protein matrix: methane generation by methyl-coenzyme M reductase with F430 cofactor and its models.
    Miyazaki Y; Oohora K; Hayashi T
    Chem Soc Rev; 2022 Mar; 51(5):1629-1639. PubMed ID: 35148362
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cryoreduction of methyl-coenzyme M reductase: EPR characterization of forms, MCR(ox1) and MCR (red1).
    Telser J; Davydov R; Horng YC; Ragsdale SW; Hoffman BM
    J Am Chem Soc; 2001 Jun; 123(25):5853-60. PubMed ID: 11414817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Substrate-analogue-induced changes in the nickel-EPR spectrum of active methyl-coenzyme-M reductase from Methanobacterium thermoautotrophicum.
    Rospert S; Voges M; Berkessel A; Albracht SP; Thauer RK
    Eur J Biochem; 1992 Nov; 210(1):101-7. PubMed ID: 1332856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural heterogeneity and purification of protein-free F430 from the cytoplasm of Methanobacterium thermoautotrophicum.
    Shiemke AK; Hamilton CL; Scott RA
    J Biol Chem; 1988 Apr; 263(12):5611-6. PubMed ID: 3356701
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Didehydroaspartate Modification in Methyl-Coenzyme M Reductase Catalyzing Methane Formation.
    Wagner T; Kahnt J; Ermler U; Shima S
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10630-3. PubMed ID: 27467699
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An investigation of possible competing mechanisms for Ni-containing methyl-coenzyme M reductase.
    Chen SL; Blomberg MR; Siegbahn PE
    Phys Chem Chem Phys; 2014 Jul; 16(27):14029-35. PubMed ID: 24901069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Observation of organometallic and radical intermediates formed during the reaction of methyl-coenzyme M reductase with bromoethanesulfonate.
    Li X; Telser J; Kunz RC; Hoffman BM; Gerfen G; Ragsdale SW
    Biochemistry; 2010 Aug; 49(32):6866-76. PubMed ID: 20597483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes.
    Thauer RK
    Biochemistry; 2019 Dec; 58(52):5198-5220. PubMed ID: 30951290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coordination and binding geometry of methyl-coenzyme M in the red1m state of methyl-coenzyme M reductase.
    Hinderberger D; Ebner S; Mayr S; Jaun B; Reiher M; Goenrich M; Thauer RK; Harmer J
    J Biol Inorg Chem; 2008 Nov; 13(8):1275-89. PubMed ID: 18712421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.