BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 17002313)

  • 1. Acid-base chemical mechanism of homocitrate synthase from Saccharomyces cerevisiae.
    Qian J; West AH; Cook PF
    Biochemistry; 2006 Oct; 45(39):12136-43. PubMed ID: 17002313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae.
    Qian J; Khandogin J; West AH; Cook PF
    Biochemistry; 2008 Jul; 47(26):6851-8. PubMed ID: 18533686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic mechanism of histidine-tagged homocitrate synthase from Saccharomyces cerevisiae.
    Andi B; West AH; Cook PF
    Biochemistry; 2004 Sep; 43(37):11790-5. PubMed ID: 15362863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and chemical mechanisms of homocitrate synthase from Thermus thermophilus.
    Kumar VP; West AH; Cook PF
    J Biol Chem; 2011 Aug; 286(33):29428-29439. PubMed ID: 21733842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of subdomain II in the recognition of acetyl-CoA revealed by the crystal structure of homocitrate synthase from Sulfolobus acidocaldarius.
    Suzuki T; Tomita T; Hirayama K; Suzuki M; Kuzuyama T; Nishiyama M
    FEBS J; 2021 Mar; 288(6):1975-1988. PubMed ID: 32897601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Kumar VP; Thomas LM; Bobyk KD; Andi B; Cook PF; West AH
    Biochemistry; 2012 Jan; 51(4):857-66. PubMed ID: 22243403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase.
    Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH
    Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae.
    Vashishtha AK; West AH; Cook PF
    Biochemistry; 2009 Jun; 48(25):5899-907. PubMed ID: 19449898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical mechanism of the serine acetyltransferase from Haemophilus influenzae.
    Johnson CM; Huang B; Roderick SL; Cook PF
    Biochemistry; 2004 Dec; 43(49):15534-9. PubMed ID: 15581365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and chemical mechanisms of the sheep liver 6-phosphogluconate dehydrogenase.
    Price NE; Cook PF
    Arch Biochem Biophys; 1996 Dec; 336(2):215-23. PubMed ID: 8954568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase.
    Zheng R; Blanchard JS
    Biochemistry; 2003 Sep; 42(38):11289-96. PubMed ID: 14503879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate activation by acyl-CoA dehydrogenases: transition-state stabilization and pKs of involved functional groups.
    Vock P; Engst S; Eder M; Ghisla S
    Biochemistry; 1998 Feb; 37(7):1848-60. PubMed ID: 9485310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae.
    Lin Y; Volkman J; Nicholas KM; Yamamoto T; Eguchi T; Nimmo SL; West AH; Cook PF
    Biochemistry; 2008 Apr; 47(13):4169-80. PubMed ID: 18321070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overall kinetic mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Xu H; West AH; Cook PF
    Biochemistry; 2006 Oct; 45(39):12156-66. PubMed ID: 17002315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic mechanism of hamster arylamine N-acetyltransferase 2.
    Wang H; Liu L; Hanna PE; Wagner CR
    Biochemistry; 2005 Aug; 44(33):11295-306. PubMed ID: 16101314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of substrate recognition and insight into feedback inhibition of homocitrate synthase from Thermus thermophilus.
    Okada T; Tomita T; Wulandari AP; Kuzuyama T; Nishiyama M
    J Biol Chem; 2010 Feb; 285(6):4195-4205. PubMed ID: 19996101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4-Oxalocrotonate tautomerase: pH dependence of catalysis and pKa values of active site residues.
    Stivers JT; Abeygunawardana C; Mildvan AS; Hajipour G; Whitman CP
    Biochemistry; 1996 Jan; 35(3):814-23. PubMed ID: 8547261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ability of single-site mutants of citrate synthase to catalyze proton transfer from the methyl group of dethiaacetyl-coenzyme A, a non-thioester substrate analog.
    Kurz LC; Roble JH; Nakra T; Drysdale GR; Buzan JM; Schwartz B; Drueckhammer DG
    Biochemistry; 1997 Apr; 36(13):3981-90. PubMed ID: 9092828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of lysine in Saccharomyces cervisiae: properties and spectrophotometric determination of homocitrate synthase activity.
    Gray GS; Bhattacharjee JK
    Can J Microbiol; 1976 Nov; 22(11):1664-7. PubMed ID: 10066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, mechanism, and conformational dynamics of O-acetylserine sulfhydrylase from Salmonella typhimurium: comparison of A and B isozymes.
    Chattopadhyay A; Meier M; Ivaninskii S; Burkhard P; Speroni F; Campanini B; Bettati S; Mozzarelli A; Rabeh WM; Li L; Cook PF
    Biochemistry; 2007 Jul; 46(28):8315-30. PubMed ID: 17583914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.