These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 17002369)
1. Binding of a designed substrate analogue to diisopropyl fluorophosphatase: implications for the phosphotriesterase mechanism. Blum MM; Löhr F; Richardt A; Rüterjans H; Chen JC J Am Chem Soc; 2006 Oct; 128(39):12750-7. PubMed ID: 17002369 [TBL] [Abstract][Full Text] [Related]
2. Structural characterization of the catalytic calcium-binding site in diisopropyl fluorophosphatase (DFPase)--comparison with related beta-propeller enzymes. Blum MM; Chen JC Chem Biol Interact; 2010 Sep; 187(1-3):373-9. PubMed ID: 20206152 [TBL] [Abstract][Full Text] [Related]
3. Reversed enantioselectivity of diisopropyl fluorophosphatase against organophosphorus nerve agents by rational design. Melzer M; Chen JC; Heidenreich A; Gäb J; Koller M; Kehe K; Blum MM J Am Chem Soc; 2009 Dec; 131(47):17226-32. PubMed ID: 19894712 [TBL] [Abstract][Full Text] [Related]
4. Mutational and structural studies of the diisopropylfluorophosphatase from Loligo vulgaris shed new light on the catalytic mechanism of the enzyme. Katsemi V; Lücke C; Koepke J; Löhr F; Maurer S; Fritzsch G; Rüterjans H Biochemistry; 2005 Jun; 44(25):9022-33. PubMed ID: 15966726 [TBL] [Abstract][Full Text] [Related]
5. Quantification of hydrolysis of toxic organophosphates and organophosphonates by diisopropyl fluorophosphatase from Loligo vulgaris by in situ Fourier transform infrared spectroscopy. Gäb J; Melzer M; Kehe K; Richardt A; Blum MM Anal Biochem; 2009 Feb; 385(2):187-93. PubMed ID: 19084491 [TBL] [Abstract][Full Text] [Related]
6. Backbone and side chain chemical shift assignment of diisopropyl fluorophosphatase (DFPase) from Loligo vulgaris, an organophosphorus-degrading enzyme. Chen JC; Tonelli M; Anderson P; Michalczyk R; Blum MM; Williams RF Biomol NMR Assign; 2023 Jun; 17(1):55-60. PubMed ID: 36763236 [TBL] [Abstract][Full Text] [Related]
7. Inhibitory potency against human acetylcholinesterase and enzymatic hydrolysis of fluorogenic nerve agent mimics by human paraoxonase 1 and squid diisopropyl fluorophosphatase. Blum MM; Timperley CM; Williams GR; Thiermann H; Worek F Biochemistry; 2008 May; 47(18):5216-24. PubMed ID: 18396898 [TBL] [Abstract][Full Text] [Related]
8. Activation of the binuclear metal center through formation of phosphotriesterase-inhibitor complexes. Samples CR; Raushel FM; DeRose VJ Biochemistry; 2007 Mar; 46(11):3435-42. PubMed ID: 17315951 [TBL] [Abstract][Full Text] [Related]
10. Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with (1)H- (31)P HSQC NMR spectroscopy. Gäb J; Melzer M; Kehe K; Wellert S; Hellweg T; Blum MM Anal Bioanal Chem; 2010 Feb; 396(3):1213-21. PubMed ID: 19943158 [TBL] [Abstract][Full Text] [Related]
11. Neutron structure and mechanistic studies of diisopropyl fluorophosphatase (DFPase). Chen JC; Mustyakimov M; Schoenborn BP; Langan P; Blum MM Acta Crystallogr D Biol Crystallogr; 2010 Nov; 66(Pt 11):1131-8. PubMed ID: 21041927 [TBL] [Abstract][Full Text] [Related]
12. In vitro and in vivo efficacy of PEGylated diisopropyl fluorophosphatase (DFPase). Melzer M; Heidenreich A; Dorandeu F; Gäb J; Kehe K; Thiermann H; Letzel T; Blum MM Drug Test Anal; 2012; 4(3-4):262-70. PubMed ID: 22174192 [TBL] [Abstract][Full Text] [Related]
13. Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site. Hill CM; Li WS; Thoden JB; Holden HM; Raushel FM J Am Chem Soc; 2003 Jul; 125(30):8990-1. PubMed ID: 15369336 [TBL] [Abstract][Full Text] [Related]
14. Theoretical Studies on Catalysis Mechanisms of Serum Paraoxonase 1 and Phosphotriesterase Diisopropyl Fluorophosphatase Suggest the Alteration of Substrate Preference from Paraoxonase to DFP. Zhang H; Yang L; Ma YY; Zhu C; Lin S; Liao RZ Molecules; 2018 Jul; 23(7):. PubMed ID: 29986514 [TBL] [Abstract][Full Text] [Related]
15. Hydrolysis of DFP and the nerve agent (S)-sarin by DFPase proceeds along two different reaction pathways: implications for engineering bioscavengers. Wymore T; Field MJ; Langan P; Smith JC; Parks JM J Phys Chem B; 2014 May; 118(17):4479-89. PubMed ID: 24720808 [TBL] [Abstract][Full Text] [Related]
16. In crystallo capture of a Michaelis complex and product-binding modes of a bacterial phosphotriesterase. Jackson CJ; Foo JL; Kim HK; Carr PD; Liu JW; Salem G; Ollis DL J Mol Biol; 2008 Feb; 375(5):1189-96. PubMed ID: 18082180 [TBL] [Abstract][Full Text] [Related]
17. Structure-based and random mutagenesis approaches increase the organophosphate-degrading activity of a phosphotriesterase homologue from Deinococcus radiodurans. Hawwa R; Larsen SD; Ratia K; Mesecar AD J Mol Biol; 2009 Oct; 393(1):36-57. PubMed ID: 19631223 [TBL] [Abstract][Full Text] [Related]
18. Evolution in the amidohydrolase superfamily: substrate-assisted gain of function in the E183K mutant of a phosphotriesterase-like metal-carboxylesterase. Mandrich L; Manco G Biochemistry; 2009 Jun; 48(24):5602-12. PubMed ID: 19438255 [TBL] [Abstract][Full Text] [Related]
19. Probing the Suitability of Different Ca Zlobin A; Diankin I; Pushkarev S; Golovin A Molecules; 2021 Sep; 26(19):. PubMed ID: 34641383 [TBL] [Abstract][Full Text] [Related]