These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 17002388)

  • 1. Controlling the growth of single crystalline nanoribbons of copper tetracyanoquinodimethane for the fabrication of devices and device arrays.
    Liu Y; Li H; Tu D; Ji Z; Wang C; Tang Q; Liu M; Hu W; Liu Y; Zhu D
    J Am Chem Soc; 2006 Oct; 128(39):12917-22. PubMed ID: 17002388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass-production of single-crystalline device arrays of an organic charge-transfer complex for its memory nature.
    Liu Y; He M; Meng Q; Tang Z; Li L; Hu W
    Small; 2012 Feb; 8(4):557-60, 478. PubMed ID: 22282399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic single-crystalline p-n junction nanoribbons.
    Zhang Y; Dong H; Tang Q; Ferdous S; Liu F; Mannsfeld SC; Hu W; Briseno AL
    J Am Chem Soc; 2010 Aug; 132(33):11580-4. PubMed ID: 20681577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large scale pattern graphene electrode for high performance in transparent organic single crystal field-effect transistors.
    Liu W; Jackson BL; Zhu J; Miao CQ; Chung CH; Park YJ; Sun K; Woo J; Xie YH
    ACS Nano; 2010 Jul; 4(7):3927-32. PubMed ID: 20536162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superlong beta-AgVO3 nanoribbons: high-yield synthesis by a pyridine-assisted solution approach, their stability, electrical and electrochemical properties.
    Song JM; Lin YZ; Yao HB; Fan FJ; Li XG; Yu SH
    ACS Nano; 2009 Mar; 3(3):653-60. PubMed ID: 19231822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterning organic single-crystal transistor arrays.
    Briseno AL; Mannsfeld SC; Ling MM; Liu S; Tseng RJ; Reese C; Roberts ME; Yang Y; Wudl F; Bao Z
    Nature; 2006 Dec; 444(7121):913-7. PubMed ID: 17167482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution synthesis of ultrathin single-crystalline SnS nanoribbons for photodetectors via phase transition and surface processing.
    Deng Z; Cao D; He J; Lin S; Lindsay SM; Liu Y
    ACS Nano; 2012 Jul; 6(7):6197-207. PubMed ID: 22738287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-crystalline molybdenum trioxide nanoribbons: photocatalytic, photoconductive, and electrochemical properties.
    Cheng L; Shao M; Wang X; Hu H
    Chemistry; 2009; 15(10):2310-6. PubMed ID: 19156810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-quality ultralong Sb2S3 nanoribbons on large scale.
    Yu Y; Wang RH; Chen Q; Peng LM
    J Phys Chem B; 2005 Dec; 109(49):23312-5. PubMed ID: 16375299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and electrical properties of a Cu-tetracyanoquinodimethane nanowire array in a porous anodic alumina template.
    Shen H; Zheng K; Li J; Sun D; Chen G
    Nanotechnology; 2008 Jan; 19(1):015305. PubMed ID: 21730531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance air-stable n-type transistors with an asymmetrical device configuration based on organic single-crystalline submicrometer/nanometer ribbons.
    Tang Q; Li H; Liu Y; Hu W
    J Am Chem Soc; 2006 Nov; 128(45):14634-9. PubMed ID: 17090049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene nanoribbon devices produced by oxidative unzipping of carbon nanotubes.
    Sinitskii A; Dimiev A; Kosynkin DV; Tour JM
    ACS Nano; 2010 Sep; 4(9):5405-13. PubMed ID: 20812742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and optical properties of CdS nanoribbons.
    Kar S; Satpati B; Satyam PV; Chaudhuri S
    J Phys Chem B; 2005 Oct; 109(41):19134-8. PubMed ID: 16853467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freestanding mesoporous quasi-single-crystalline CO3O4 nanowire arrays.
    Li Y; Tan B; Wu Y
    J Am Chem Soc; 2006 Nov; 128(44):14258-9. PubMed ID: 17076490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons.
    Terrones M
    ACS Nano; 2010 Apr; 4(4):1775-81. PubMed ID: 20420468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution-based fabrication of single-crystalline arrays of organic nanowires.
    Tong Y; Tang Q; Lemke HT; Moth-Poulsen K; Westerlund F; Hammershøj P; Bechgaard K; Hu W; Bjørnholm T
    Langmuir; 2010 Jan; 26(2):1130-6. PubMed ID: 19791778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large scale synthesis of tellurium nanoribbons in tetraethylene pentamine aqueous solution and the stability of tellurium nanoribbons in ethanol and water.
    He Z; Yu SH
    J Phys Chem B; 2005 Dec; 109(48):22740-5. PubMed ID: 16853963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Multicomponent precursor to nanoparticle nanoribbons of ZnO.
    Gui Z; Liu J; Wang Z; Song L; Hu Y; Fan W; Chen D
    J Phys Chem B; 2005 Jan; 109(3):1113-7. PubMed ID: 16851068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of high-density nanocavities inside TiO2-B nanoribbons and their enhanced electrochemical lithium storage properties.
    Li Q; Zhang J; Liu B; Li M; Liu R; Li X; Ma H; Yu S; Wang L; Zou Y; Li Z; Zou B; Cui T; Zou G
    Inorg Chem; 2008 Nov; 47(21):9870-3. PubMed ID: 18837547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance enhancement of semiconductor devices by control of discrete dopant distribution.
    Hori M; Shinada T; Taira K; Shimamoto N; Tanii T; Endo T; Ohdomari I
    Nanotechnology; 2009 Sep; 20(36):365205. PubMed ID: 19687545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.